Harfli ifadeler

  • Konuyu açan Konuyu açan Suskun
  • Açılış tarihi Açılış tarihi

Suskun

V.I.P
V.I.P

HARFLİ İFADELER NE DEMEKTİR?​

HARFLİ İFADE FORMÜLLERİ NELERDİR?​


ÇARPANLARA AYIRMA

ORTAK ÇARPAN PARANTEZİNE ALMA


A(x) . B(x) ± A(x) . C(x) = A(x) . [B(x) ± C(x)]

En az dört terimi olan ifadeler ortak çarpan parantezine alınacak biçimde gruplandırılır, sonra ortak çarpan parantezine alınır.

ÖZDEŞLİKLER​

1. İki Kare Farkı - Toplamı
I) a2 – b2 = (a – b) (a + b)
II) a2 + b2 = (a + b)2 – 2ab ya da a2 + b2 = (a – b)2 + 2ab dir.

2. İki Küp Farkı - Toplamı
I) a3 – b3 = (a – b) (a2 + ab + b2 )
II) a3 + b3 = (a + b) (a2 – ab + b2 )
III) a3 – b3 = (a – b)3 + 3ab (a – b)
IV) a3 + b3 = (a + b)3 – 3ab (a + b)

3. n. Dereceden Farkı - Toplamı
I) n bir sayma sayısı olmak üzere,
xn – yn = (x – y) (xn – 1 + xn – 2y + xn – 3 y2
+ ... + xyn – 2 + yn – 1) dir.
II) n bir tek sayma sayısı olmak üzere,
xn + yn = (x + y) (xn – 1 – xn – 2y + xn – 3 y2
– ... – xyn – 2 + yn – 1) dir.

4. Tam Kare İfadeler
I) (a + b)2 = a2 + 2ab + b2
(a + b)2 = (a – b)2 + 4ab
II) (a – b)2 = a2 – 2ab + b2
(a – b)2 = (a + b)2 – 4ab
III) (a + b + c)2 = a2 + b2 + c2 + 2(ab + ac + bc)
IV) (a + b – c)2 = a2 + b2 + c2 + 2(ab – ac – bc)

5. (a ± b)n nin Açılımı
Pascal Üçgeni
(a + b) n açılımı yapılırken, önce a'nın n. kuvvetten başlayarak azalan, b'nin 0 dan başlayarak artan kuvvetlerinin çarpımları yazılıp toplanır.

Sonra n'nin Paskal üçgenindeki karşılığı bulunarak kat sayılar belirlenir.

(a – b)n yukarıdaki biçimde yapılır ancak b'nin;
çift kuvvetlerinde terimin önüne (+),
tek kuvvetlerinde terimin önüne (–) işareti konulur.

• (a + b)3 = a3 + 3a2b + 3ab2 + b3
• (a – b)3 = a3 – 3a2b + 3ab2 – b3
• (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 +b4
• (a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4

ÖRNEKLER:
1-)
ax+bx+ay+by=(ax+bx)+(ay+by)
=x(a+b)+y(a+b)
=(a+b).(x+y)

2-) x-ax+2x-2a=(x-ax)+(2x-2a)
=x(x-a)+2(x-a)
=(x-1).(a-1)

3-) ax-a-x+1=(ax-a)+(-x+1)
=a(x-1)-1(x-1)
=(x-1).(a-1)
 
Geri
Top