BOŞ KÜME:
Tanım: Elemanı olmayan kümeye BOŞ KÜME denir. f veya { } sembollerinden biriyle gösterilir.
Örnek: A = { x: x = - 1 , x Î R } kümesi boş kümedir. Çünkü karesi “-1” olan reel sayı yoktur.
UYARI:
{ f } boş küme değildir , tek elemanlı kümedir.
{ 0 } kümesi boş küme değildir.
Boş küme bir tanedir.
EŞİT KÜMELER:
Tanım: Aynı elemanlardan oluşan kümeye eşit kümeler denir. A ve B eşit kümeler ise “ A = B “ ile , A ve B eşit değilse “ A ¹ B “ ile gösterilir.
Örnek: A = { a , b , 2 } , B = { b , 2 , a }
A = B ‘ dir
DENK KÜMELER:
Tanım: Eleman sayıları eşit olan iki kümeye denk kümeler denir.
Örnek: A= { 1 , 0 , -1 } B = { a , b , c } A ¹ B dir fakat s(A) = s(B) = 3 olduğundan A ve B denk kümelerdir.
UYARI: Liste yöntemi ile yazılan bir kümede yazılış sırası değiştirğinde küme değişmez.
ALT KÜME:
Bir “A” kümesinde bulunan B
Her eleman aynı zamanda “B” kü-
mesinde eleman ise “A” kümesi “B” A
kümesinin alt kümesidir denir ve
“A Ì B “ ifadesi ile gösterilir.
“A Ì B “ ifadesi A alt küme B yada
“B” “A’yı” kapsar biçiminde okunur.
"x Î A , x Î B ise A Ì B ‘dir.
A Ì B
Örnek: A = { -1 , 2 , 3 } B = { -1 , 3 , 6 , 5 , 2 , 7 } ise
A Ì B ‘dir.
Alt Kümenin Özellikleri:
Her “ A” kümesi için F Ì A ‘dır.(Çünkü F ‘ye ait olup A ‘ ya ait olmayan eleman yoktur.
Her “A” kümesi için A Ì A ‘dır. (Her x Î A için x Î A olduğundan A Ì A ‘dır. )
A , B , C kümeleri için ( A Ì B ve B Ì C) Þ A Ì C ‘dir.Kaynakwh:
(A Ì B ve B Ì A) Û A = B ‘ dir.
ÖZALT KÜME:
Tanım: Bir “A” kümesinin kendisi dışındaki alt kümesine “A” kümesinin özalt kümesi denir.
Örnek: A = { 2 , 5 } kümesinin özalt kümeler F , {2} , {5} ‘ dir.
KUVVET KÜMESİ:
Tanım: Bir “A” kümesinin bütün alt kümelerinin kümesine A ‘nın kuvvet kümesi denir ve “P(A)” ile gösterilir.
Örnek: A = { a , x } ise P(A) = { F,{0},{x},{a,x} } ‘dır.
ALT ve ÖZALT KÜME SAYISI:
Tanım: Genel olarak s(A)=n olan “A” kümesinin alt kümelerinin sayısı 2 ve özalt kümelerinin 2 – 1 ‘dir.
Örnek: A = { 1 , 2 , 3 } ise bu kümenin alt küme sayısı 2 ‘dir.
S(A) = 3 oldugundan 2 = 8’dir. A kümesinin 8 alt kümesi 7 özalt kümesi vardir.
N ELEMANLI BİR A KÜMESİNİN (r £ n) r ELEMANLI ALT KÜME SAYISI:
N öğeli bir kümenin r_öğeli (r £ n) alt kümelerinin sayısı
( ) = ‘dir. (yani n’in r’li kombinasyonu denir.)
Örnek: A = { a , b , c , d } kümesini 2 elemanlı alt kümelerinin
sayısını bulalım. ( ) =