Matematik Paradoksları

yeşüLL

limitsizsiniz...!
Özel üye
Doğru Parçası Paradoksu:

Önce doğru parçasının tarifini yapalım:


Doğru Parçası: Başlangıcı ve sonu olan ve sonsuz adet noktadan oluşan doğru. Pekiyi nokta nedir?

Nokta: Kalemin kağıda bıraktığı en küçük iz veya belirti.Malûmdur ki noktanın boyutu yoktur. O halde dikkat. Paradoks başlıyor:




Noktanın boyutu olmadığına göre iki noktanın yan yana gelmesi bir şey ifade etmez. 100 nokta veya 1 milyar nokta da yan yana geldiğinde herhangi bir şekil oluşturmaz.( Çünkü şekil oluşturması için gerekli olan boyut özelliğini sağlamıyor) Bu şuna benzer ki; sıfır ile sıfırın toplamı yine sıfırdır. Milyarlarca sıfırı toplasak 'yarım' dahi etmez. O halde doğrunun tanımında bir hata var. Çünkü sonsuz adet noktanın yan yana gelmesi bir şey ifade etmez! Noktanın çok çok az da olsa boyutu olduğunu kabul etmemiz gerekir. Bu sefer de noktanın tarifi hatalı olur.

Noktayı boyutlu kabul edelim. Karşımıza bir paradoks daha çıkar; doğru parçasında sonsuz adet nokta olduğuna göre doğru parçasının da uzunluğu sonsuz olmalıdır. Çünkü çok az da olsa boyutu olan bir şeyden sonsuz adedi yanyana gelirse sonsuz uzunluk olur.

2+2=5 ¿?

X = Y ................................................ol sun



X² = X.Y............................................eşitli ğin her iki tarafını 'X' ile çarptık.

X² - Y² = XY - Y²..............................her iki taraftan 'Y²' çıkardık.
(X + Y).(X - Y) = Y.( X-Y )...............sol tarafı çarpanlara ayırdık, sağ tarafı 'Y' parantezine aldık.
( X + Y ) = Y.....................................( X - Y )'ler sadeleşti.
X + X = X..........................................X = Y olduğundan,
2.X = X..............................................'X' leri topladık.
2 = 1 ................................................'X' ler sadeleşti.
3 + 2 = 1 + 3....................................her iki tarafa '3' ilâve ettik.
5 = 4.................................................. buradan,


5 = 2 + 2.......................................'4'ü, '2+2' şeklinde yazdık. HATA NEREDE?
 
Cantor Paradoksu:


George Cantor'a göre bir kümenin alt kümelerinin eleman sayısı, asıl kümeden daha fazladır. Ancak bu kaide, "Bütün kümelerin kümesi" için de geçerli midir?
"Bütün kümelerin kümesi", X olsun. Öyle ise her alt kümesi kendisinin elemanıdır. X'in "Alt kümeleri kümesi" de X'in alt kümesidir. Yani:
2ª Ì X (2 üzeri a, alt küme X) dir. Buradan şunu yazabiliriz:
card(2ª) card(a)................1
Çünkü alt kümelerin kardinali asıl kümelerden küçüktür veya eşittir. Ancak Cantor Teoremine göre:
card(2ª) > card(a)...................2
olmalıdır. 1 ve 2 çelişmektedir.
 
Karışım Paradoksu:
Bir fincan sütümüz ve bir fincan da kahvemiz var. Bir kaşık sütten alıyoruz ve kahve fincanına döküyoruz. İyice karıştırıp oradan da bir kaşık alıyoruz ve süte döküyoruz. Şimdi sorumuz geliyor:
Kahvedeki süt mü yoksa sütteki kahve mi daha fazladır?
Cevap şaşırtıcı gelebilir ama karışım oranları eşittir. İşte ispatı:
Kabul edelim ki karışımımız homojen olmasın. Meselâ kahveye kattığımız süt, tamamen dibe çöksün. Kahveden aldığımız miktar tabi ki sütten aldığımıza eşit olacaktır. Veya:
İlk karışımdan sonra kaşığımızın yarısı süt, yarısı da kahve olsun. Bu sefer yine sütte yarım kaşık kahve, kahvede yarım kaşık süt bulunacaktır. Veya:
İlk karışım homojen olsun. Aldığımız bir kaşık karışımın % 90 ını kahve, % 10 unu süt kabul edelim. Sütün % 90 ı kahvede kalmıştır. Sonuçta eksilen sütün yerini kahve dolduracağından karışım oranları eşit olur.
 
Bütün Sayılar Eşittir Paradoksu:


a ve b birbirinden farklı herhangi iki tamsayı ve c de bunların farkı olsun:
a-b=c



(a-b)(a-b)=c.(a-b)..............................her iki tarafı (a-b) ile çarptık.

a²-2ab+b²=ac-bc...............................parantezleri açtık.
a²-2ab+b²-ac=-bc.............................ac yi sol tarafa attık.
a²-2ab-ac=-bc-b²...............................b² yi sağ tarafa attık.
a²-ab-ac=ab-bc-b².............................2ab nin birini sağ tarafa geçirdik.
a(a-b-c)=b(a-b-c)..............................a ve b parantezine aldık.


a=b.................................................. ..(a-b-c) ler sadeleşti. (2+2=5 Paradoksunun benzeri)



 
Karışık Bir Hesap:
İki çocuk ayrı ayrı kalem satmaktadırlar. Her ikisinin de 30'ar tane kalemi vardır. Biri, 3 kalemi 10 TL'ye; diğeri de 2 kalemi 10 TL'ye vermektedir. İlki 30 kalemden 100 TL, diğeri de 150 TL kazanır. ( Toplam 250 TL.) Ertesi gün yine 30'ar kalemle evlerinden çıkarlar. Yolda karşılaştıklarında biri diğerine der ki:
-"Gel seninle ortak olalım. 60 (30+30) kalemin 5 (2+3) tanesini 20 (10+10)TL'ye satalım. Kazandığımız parayı da paylaşırız. Basit bir hesapla 60 kalemden 240 TL kazanırlar. Yani:

5 Kalem...............20 TL ise


60 Kalem..............x TL'dir. Buradan;


x=(60.20)/5= 240 TL

Çocuklar, ayrı ayrı satış yaptıklarında toplam 250 TL kazanıyorlardı. Beraber sattıklarında neden 10 TL zarar ettiler?



1 kg = 1 ton ¿?



1 kg = 1000 gr.............(1)


2 kg = 2000 gr.............(2)
(1) ve (2) çarpılırsa:

2 kg = 2.000.000 gr


2 kg = 2.000 kg.............(2.000.000 gr = 2.000 kg)

2 kg = 2 ton..................(2.000 kg = 2 ton). Dolayısı ile,
1 kg = 1 ton




 
Hempel Paradoksu:



Carl Hempel'e göre "Bütün kuzgunlar siyahtır!"




Bu önermeyi iki şekilde ispatlayabiliriz:
a) Çok sayıda kuzgun görüp, hepsinin de siyah olduğunu tesbit ederek,



b) Siyah olmayan şeylerin, aynı zamanda kuzgun da olmadığını görerek.



Bilinen şu ki çok sayıda siyah kuzgun ve yine çok sayıda siyah olmayan, aynı zamanda kuzgun da olmayan cisim vardır. Siyah olmayan tüm cisimler incelenmeden bu fikre varamayız. Kırmızı cisimler için bu uygulama yapılmamışsa "bazı kuzgunlar kırmızı " da olabilir. Bu sebeplerden Hempel paradoksu, "Tümevarım" ın itibarını sarsmıştır.
 
Arnauld Paradoksu:



Herkes bilir ki;

(Büyük Sayı / Küçük Sayı) ¹ (Küçük Sayı / Büyük Sayı) dır.

(5 / 2)
¹ (2 / 5) gibi
Ancak negatif sayılar bu kuralı bozar:




(3 / -3) = (-3 / 3)


Ayrıca;
(Büyük Sayı / Küçük Sayı) > 1 dir.

(4 / 3) > 1 gibi
Yine negatif sayılar için kural ihlâl edilir:





(3 / -1) < 1


Bu durum, matematikçi Arnauld'a mantıksız geldiği için negatif sayıların olmadığına hükmetti.

 
iconflash.gifGalileo Paradoksu:


Sonsuzlukla ilgili bir paradoks:




galileo.gif


Yukarıda ilk sırada pozitif tamsayılar, altında iki katları, en altta da kareleri var. İlk seri sonsuz olduğuna göre diğer seriler de sonsuz elemanlı. Ayrıca ilave olarak sayıların küplerini, üç katlarını, on katlarını, yarılarını, üçtebirlerini de yazabiliriz. Hiçbir sonsuz da birbirine eşit değil. (Sonsuz hakkında bkz. )


Euplides (Kum Yığını) Paradoksu:


Euplides, hiçbir zaman bir "kum yığını" oluşturulamayacağını iddia etmiştir. Çünkü bir kum tanesi, "yığın" değildir. Yanına bir tane daha koyarsak yine yığın oluşmaz. "Kum yığını" olmayan bir şeyin yanına (veya üzerine) kum tanesi koymakla yığın elde edemeyeceğimize göre Hiçbir zaman "kum yığını" oluşturamayız.
Daha açık bir deyişle: Kabul edelim ki birer birer kum tanelerini biraraya getirelim. Hangi merhaleden sonra kumlar "yığın" oluşturur? Diyelim ki 'bir milyon' adet kum tanesi, bir yığın oluştursun. Dokuzyüz doksandokuzbin dokuzyüz doksandokuzu "kum yığını" kabul edilmeyecek mi? Edersek "1" eksiği de yığın olmaz mı? Yani hangi aşama bizim için "yığın" anlamına gelir?


-1=1 ¿?


bir.webp


Berber Paradoksu:


Klasik paradokslardan biri daha:
question.gifBir berber, bulunduğu köydeki erkeklerden, yalnızca kendi kendini traş edemeyen erkekleri traş ediyor. Berberi kim traş edecek?
Kendi kendine traş olsa; kendisini traş edebildiği için tanıma ters düşecek. Başkası traş etse; o kişi kendi kendine de traş olabiliyor demektir. (bkz Russel Paradoksu)



Russel Paradoksu:
1970 yılında 98 yaşında ölen Bertrand RUSSEL'ın çok bilinen paradoksu:
"Bir odada papa ve ben varım. Odada kaç kişiyiz?" Cevap:
"Bir kişiyiz. Çünkü ben, aynı zamanda papayım"

Russel'ın "Kümeler" Paradoksu:
Russel'a göre iki çeşit küme var:
a) Kendisinin elemanı olan(ihtiva eden) kümeler.
b) Kendisinin elemanı olmayan kümeler.

Şimdi, "Kendisinin elemanı olmayan kümeler"in kümesine 'X' diyelim. X, kendisinin elemanı mıdır?



Kaynak :
 
Geri
Top