Medyan - Medyan Hesaplama
Olasılık kuramı ve istatistik bilim dallarında tek-değişirli veriler icin medyan bir tek-değişirli istatistiksel yığın, bir tek-değişirli bir örneklem veya bir tek-degisirli bir olasılık dağılımı içindeki yüksek değerlerde olan veri sayılarının yarısını düşük değerde olan veri değerlerini kapsıyan yarısından ayıran bir sayı olarak tanımlanır ve bir tek-değişirli merkezsel konum ölçüsü olarak kullanılır. Diğer adı da ortanca değerdir. Sonsuz sayida olmayan tek-değişirli veriler önce küçükten büyüğe doğru sıralı dizi oluşturulmasından sonra ortadaki yani ortanca değeri elde edilir.
Betimsel istatistik için medyanlar
Merkezsel konum olarak medyan
Eğer tek-değişirli verilerin dağılımı simetrik olmayıp çarpıklık gösteriyorlarsa, medyan değeri tercih edilen merkezsel konum ölçüsü olarak kullanılır ve medyanın aritmetik ortalama değerinden daha uygun bir ölçü olduğu kabul edilir. Simerik olmama, sıralanmış veri değerleri için ya en küçük değerlerin ya da en büyük değerlerin diğerlerinden çok daha fazla uzaklaşması ile ortaya çıkar. Bu beklenmedik küçük veya büyük değerlere dışlak (İngilizce: outlier) veriler adı verilir. Eğer veriler dağılımı asitmetrik olan dışlak veriler kapsıyorsa, medyan aritmetik ortalamaya nazaran daha tercih edilir merkezsel konum ölçüsü olarak kullanılır. Bu halde, istatistiksel terminolojiye göre, medyan, aritmetik ortalamadan daha güçlü (İngilizce: robust) bir ölçüdür.
İstatistiksel dağılım ve medyan
Eğer betimsel istatistikte merkezsel konum ölçüsü olarak medyan kullanılması tercih edilmekte ise, yayılmayı ölçmek için çeşitli yayılma ölçüsü bulunmaktadır. Bunlar sıra ile açıklık, çeyrekler açıklığı, ortalama mutlak sapma ve medyan mutlak sapma olabililirler. Medyan ikinci dörttebirlik olduğu için dörttebirlik maddesinde de hesaplanması gösterilmektedir.
Medyan değeri hesaplanması
Genellikle n sayıda veri değerlerinin sıralanması eğer gözlem sayısı küçükse, kolay olarak yapılabilmekte ve bu hesaplama kolaylığı merkezsel konum ölçüsü olarak medyanın tercih edilmesine bir neden olmaktadır. Ancak gözlem sayısı n artıkça, alışılmış elle yapılanan sıralama işlemleri gittikce zorlaşmaktadır; ayrıca basit el hesap makinaları ile sıralama yapmak imkanı olmamaktadır. Bilgisayar kullanılmadan ve elle yapılan işlemler kullanarak büyük gözlem sayılı verilerinin sıralanması zorluğu nedeni ile medyan büyük veri kullanılması gerektiren araştırmalarda kullanılmamışdır. Ama bilgisayarlarin gelişmesi ile medyan kullanılmasının bu dezavantaji kaybolmuştur. Bilgisayarla yapılan veri sıralanması için, özellikle çok büyük gözlem sayıda veri için özel hızlı sıralama algoritmaları kullanılmaktadır. Bu sıralama algoritmalarında genellikle (n log n) işlem yapılmaktadır ama özel böl ve fethet algoritması kullanılması ile sadece n işlem gerekmektedir.
Veri sayıları sıralandiktan sonra medyan değeri bulmak için özel kolay formüller uygulanır. Eğer gözlem sayısı tek ise medyan hemen şu formülle bulunur; yani
gözlem sayısı tek ise:
Örneğin; 1,3,4,5,7,8,13 dizisinin medyanı 5'tir. 2,4,6,8 dizisinin medyanı ise (4+6)/2=5'tir.
Eğer veri değerleri gruplanmış ve çokluk dağılımları olarak verilmişler ise, medyan, gözlem sayısında N/2 inci değerin denk düştüğü sınıftadır ve entrepolasyon ile ortaya çıkartılan formülü şu şekilde verilir:
* L: Medyan sınıfın alt değeri
* c: Medyan sınıfın aralığı
* f: Medyan sınıfın frekansı
* N: Toplam birim sayısı
* d: Medyan sınıftan bir önceki sınıfın birikimli frekansı.
Olasılık dağılımları için medyanlar
reel doğrusu üzerinde olan ve F fonksiyonu ile ifade edilen yığmalı dağılım fonksiyonuolasılık dağılımı için, aralıklı veya sürekli olması özelliğine bakılmadan, medyan değeri m şu eşitsizlik ifadelerine her zaman uyar: gösteren herhangi bir
veya
Belirli parametreleri olan belirli dağılımların medyanları hakkında şunlar söylenebilir:
* Ortalama değeri μ ve varyansı σ2 olan bir normal dağılım için medyan değeri μ olur. Gerçekten normal dağılım simetrik çan şeklinde olduğundan ortalama=medyan=mod olur.
* [a b] aralığında bulunan bir sürekli tekdüze dağılım için medyan değeri (a + b) / 2 olup bu ortalama değerine de eşittir.
* Konum parametresi x0 ve ölçek parametresi y de x0 olan Cauchy dağılımı için medyan değeri konum parametresine eşittir.
* Şekil parametresi k ve ölçek parametresi λ olan bir Weibull dağılımı için medyan değeri λ(ln2)1 / k olur.
Teorik özellikler
Optimal olma özelliği
Medyan, mutlak dağılmaların ortalamalarının en küçük değerini bulan bir merkezsel noktadır. Olasılık kuramının özel terimlerine göre
ifadesini en küçük yapan c değeri için, X rassal değişkenin olasılık dağılımının medyanıdır. Dikkat edilmesi gerekir ki, c herzaman tek değildir ve onun için genellikle kesinlikle tanımlanamaz.
Ortalamaları ve medyanları birbirine bağlayan bir eşitsizlik
Sürekli bir olasılık dağılımı için, medyan sayı değeri ile ortalama sayı değeri arasında bir standart sapmaya eşit bir fark vardır. Bakın konum ve ölçekleme parametreleri arasında bir eşitsizlik.
* Konum ve ölçekleme paramatreleri için bir eşitsizlik ifadesi
* Medyan 2inci dörttebirlik, 5inci ondabirlik ve 50inci yüzdebirlik olur.
* Genellikle medyan bir yanlı kestirimcidir.
Wikipedia,