Öklid Geometrisi

~meLek~

GalataSaray'ım
Öklid Geometrisi

Euclit geometrisinin temeli nokta iie başlar. Pisagorcular noktayı küçük bir zerre olarak tanımlamışlardır. Bu tanım aslında Aristo’dan (İ. Ö. 340) alınmıştır. Eflatun (i. ö. 380), noktayı bir doğrunun başlangıcı olarak tanımlamıştır. Bu kez doğru nedir sorusu karşımıza çıkmaktadır. Altıncı yüzyılda yaşayan Simplicus, uzunluğun başlangıcı ve buradan doğru uzar. Ayrıca bölünemez diye noktayı tanımlamıştır. Hiçbir parçası ol*mayan ize nokta denir tanımını Euclit (İ.Ö. 300) yapmıştır. Heron (50) da aynı sözcü*ğü kullanmış, noktayı boyutsuz bir limit veya doğrunun bir limitidir şeklinde söylemiştir. Capella (460), hiçbir parçası olmayan şeye nokta denir demiştir. Modern yazarlar nok*tayı sanki tanımlı bir limit kavramıdır diye almışlardır. Dönemimizde de, nokta kabul edilen bir kavramdır. Noktayı kabul ettikten sonra işler kolaylaşır.

Eflatuncular, ensiz uzunluğa doğru demişlerdir. Aynı tanımı Euclit de almıştır. Yani noktanın hareketinden doğru elde edilir. Doğrunun hareketiyle yüzey ve yüzeyin hareket ile de hacim oluşturulur. Bundan sonra doğru, yarı doğru, doğru parçası, yü*zey, düzlemsel yüzey, açı, çember, daire, çap, yarıçap, paralel doğrular ve dik doğrular gibi bir dizi geometrik tanımlar getirilmiştir.

İspatlanamayan gerçeklere aksiyom ismi verilir. Açıkça görülen fakat ispatlana-mayan gerçeklere de postülat denir. Euciit’in geometrisi tanım, aksiyom ve postülatlar üzerine kurulmuştur. Zaten matematik aksiyomatik bir düşüncedir. Belli şeyleri kabul ederseniz: onun üzerine matematiği kurarsınız.
 
Geri
Top