Yakınsaklık

Pembeyle çizilmiş, orijin merkezli sinüs fonksiyonunun yedinci dereceden Taylor çokterimlisininin bir periyodunun çizimi, maviyle çizilmiş sinüs fonksiyonuna gittikçe yaklaşır.

log(1+x) için Taylor çokterimlisi sadece −1 < x ≤ 1 aralığında hassas ve doğru bir şekilde yaklaşır. x > 1 için daha yüksek dereceden Taylor çokterimlilerinin daha kötü yaklaşıklıklar vereceğini unutmayınız.
Her fonksiyonun Taylor serisi yakınsak olmak zorunda değildir. Yakınsak Taylor serili fonksiyonlar kümesi, bir düz fonksiyonların Frechet uzayında bir eksik kümedir. Bu fonksiyonların dışında, genelde sözü geçen çoğu fonksiyonun Taylor serisi yakınsamaz.
Bir f fonksiyonunun yakınsak Taylor serisinin limiti genelde f(x)'in fonksiyon değerine eşit olmak zorunda olmamasına rağmen pratikte eşittir. Örneğin;

fonksiyonu x=0'da sonsuz türevlidir ve bu noktadaki tüm türevleri sıfırdır.
Analitik fonksiyonlar

e −1/x²'nin grafiği.
Eğer seri belirtilen aralıktaki her x noktasında f(x)'e yakınsıyorsa f(x) analitik bir fonksiyon olarak adlandırılır. Her sonsuz türevlenebilir fonksiyon analitik değildir. Örneğin, f(x) =e −1/x², x ≠ 0 ve f(0) = 0 fonksiyonunun Taylor serisi sıfıra denktir ancak fonksiyonun kendisi sıfırdan farklıdır.
Kullanım Alanları
Taylor serileri, fonksiyonların (ör. logaritma) verilen bir noktadaki sayisal değerlerini bulmak için kullanılabilirler. Buna ek olarak, türev ya da integral de işlemleri seriye açılıp daha kolay işlem yapılabimektedir