• Merhaba Ziyaretçi.
    "Hoşgeldin sonbahar "
    konulu resim yarışması başladı. İlgili konuya BURADAN ulaşabilirsiniz. Sizi de beğendiğiniz 2 resmi oylamanız için bekliyoruz...

Ünlü Matematikçiler

Suskun

V.I.P
V.I.P
Boole (1815 - 1864)

2 Kasım 1815 yılında Lincoln'da doğan George Boole, basit bir dükkancının oğluydu. O çağın İngiltere'sinde dükkancılık oldukça aşağılanan bir meslekti. Kendi kendini yetiştiren bu dahinin yüksek zekası en aşağı halk tabakasına verilmişti. Bu zeka, kendi yağıyla kavrularak bulunduğu çevrede kalacaktı. Bu deha, yüksek tabakaların okullarında da okuyamazdı. Boole'un girmek istediği okulda Latince gibi lüks dersler de okutulmuyordu. Servet ve para yönünden daha aşağı düzeyde doğmuş olanların okulunda okumalıydı. Kendisinin fakirlikten hiçbir zaman kurtulamayacağını bilen ve oğluna kapalı kapıları açmak için elinden geleni yapmış olan babasının sevgiyle dolu ve cesaret verici sözleriyle Boole Latince'yi tek başına öğrendi. Bunun için babasının bir arkadaşı olan küçük bir kitapçıya başvurmuş, fakat bu adamcağız da çocuğa Latince'nin ilk gramer kurallarını açıklayabilmişti. Boole on iki yaşına geldiği zaman Horace'ın bir şiirini İngilizce'ye çeviri yapabilecek kadar Latince'yi öğrenmişti. Çeviri tekniğini bilmeyen baba, oğluyla gurur duyduğu için, bu çeviriyi bulundukları yerin yöre gazetesinde yayınlatır. Okulda büyük bir gürültü kopar. Bu gürültünün bir kısmı iyi ve bir kısmı da kötü yöndeydi.

Klasikler öğretmeni, on iki yaşındaki bir çocuğun böyle bir çeviriyi yapabileceğini bir türlü kabul etmiyordu. Bu çevirideki bazı yanlışlıklardan mahcup olan Boole, dilbilgisi eksikliklerini tek başına doldurmaya karar verdi. Bu sırada Yunanca'ya da başlamıştı.

Boole'un babası, oğluna okulunun üstünde matematik dersleri vermiş ve optik aletlerin yapımıyla ilgisini arttırmıştı. Fakat Boole, hala klasik çalışmalarının yüksek mevkilerin anahtarı olduğunu düşünüyordu. Okulu bitirdikten sonra ticaret derslerini izledi. Fakat, bu derslerin umduğu gibi bir faydası olmadı. On altı yaşına gelince fakir ailesine yardım etmek gerektiğini anladı. Bu nedenle de bir ilkokulda ders vermeye başladı. Bu öğretmenliği tam dört yıl sürdü. Fakat, rahat bir yaşama kavuşamamıştı. Serbest meslekte çalışmayı düşünüyordu. Asker ve hukukçu da olamazdı. İçinde bulunduğu öğretmenlikte pek iç açıcı değildi. Geriye papaz olmak kalıyordu. Dört yıllık öğretmenliği süresince Fransızca, Almanca ve İtalyanca dillerini de tam olarak öğrenmişti.

Sonunda Boole, tutacağı yolu buldu. Babasının ona vermiş olduğu ilk matematik dersleri artık meyvesini vermeye başlamıştı. Boole, yirmi yaşına gelince bir özel okul açtı. Burada matematik öğretmesi gerekiyordu. Babasından aldığı derslerin faydasını gördü. O zamanın el kitaplarını gözden geçirdi. Önce hayretle incelediyse de, sonra onlardan tiksindi. Acaba büyük matematikçiler neler yapmışlardı? Abel ve Galois gibi, büyüklerin kitaplarını okudu. Fazla bir matematik bilgisi olmayanların okuyup anlayamayacağı kesin olarak bilinen Laplace'ın "Gök Mekaniği" ni hiç kimsenin yardımı olmadan okuyup anladı. Lagrange'ın "Analitik Mekanik" adlı eserini tam anladı. Artık, kendisinin yolunu çizmişti. İlk ilmi çalışması olan değişim hesabı yayınlandı. Yine tek başına çalışmasının ürünü olan invaryantları keşfetti. Zaten bu invaryantlar olmasaydı, rölativite (bağlılık) kuramı olmazdı. Cebirsel denklemlerdeki boşlukları doldurdu.

Boole'un yaşadığı dönemde, bir dergide adamın olmadığı sürece bir çalışmanın yayınlatılması olanaksızdı. Boole, bu bakımdan şanslıydı. Çünkü, 1837 yılında, İskoçya'lı D.F.Gregory adında bir matematikçi , "Cambridge Mathematical Journal" adında bir dergi çıkarıyordu. Boole, derginin müdürüne çalışmalarının birkaçını verdi. Gregory bu çalışmaların orijinalliğini ve yazış biçimini çok beğendi. Yazıları yayınladı. Böylece, iki matematikçi arasında dostça bir arkadaşlık ve mektuplaşmalar başladı ve hayatları boyunca sürdü.

Modern cebir kavramı, Peacock, Herschel, De Morgan, Dabbage, Gregory ve Boole sayesinde yerini aldı. Boole, sembol ve işlemleri kullandı. Başlangıçta oldukça çok gürültü kopardı ama, sonunda yerine oturdu. Boole, de Morgan'ın hem hayranı ve hem de büyük bir dostuydu. İngiltere'deki büyük matematikçilerle ya kendisi doğrudan ya da mektupla haberleşiyordu. 1848 yılında "Mantığın Matematik Analizi" adlı bir çalışmasını yayınladı. Bu eser, matematikte yeni bir çığır açmış ve Boole da kesin bir üne kavuşmuştu. Bu broşür, de Morgan'ın da takdirlerini topladı. Bu eser, bundan altı yıl sonra ortaya çıkacak olan bir çalışmanın müjdecisi olacaktı.

Boole'a, Cambridge'e gidip eski temellere dayanan matematik derslerini okuması önerildi. O bunları dinlemedi. İki büklüm bir vaziyette ailesini geçindirmek için öğretmenliğe devam etti. Tüm bunlara karşın, araştırmaları ve konferanslarıyla ünü günden güne yayılıyordu. İrlanda'da Cork kentinde Queen's College yeni açılmıştı. Bu ün ona bu College'e 1849 yılında matematik profesörü olarak atanmasını sağladı. Fakirlikten gelen Boole, kendine açılan bu olanakların değerini bildi. Bu arada kayda değer eserler yayınladı. 1834 yılında, mantık ve olasılıklar üzerine büyük bir eser yayınladı. Bu sırada tam otuz dokuz yaşındaydı. Bu kadar derin orijinallikte bir eser meydana getirmesi için oldukça gençti. Sürekli çalışıyor ve yeni yeni buluşları gerçekleştiriyordu. Fakat, Boole'un bu matematiği uzun bir süre ilerletilmedi. 1910 ile 1913 Yılları arasında Whitehead ile Russel, Boole'un bu çalışmasını yeniden işlediler. Sembolik mantığın amansız düşmanı Cantor'dur. Bu kuramı çok eleştirmiştir. Halbuki, bu kuram onun kuramına da yardım ediyordu.

Eserlerinin yayınlanmasından sonra çok yaşamadı. Marie Everest ile evlendi. Gitmeye söz verdiği bir konferansa yetişmek için yağmurlu bir günde sırılsıklam olup yakalandığı bir zatürreden 8 Aralık 1864 günü elli yaşında öldü. Daha sonra karısı Marie Boole, onun fikirlerini içeren "Boole Psikolojisi" adı altında yayınlanan broşürde onu anlatır. O, çok büyük bir eser verdiğinin farkında olarak öldü.
 
Bolzano (1781 - 1848)

Bernhard Bolzano, Çekoslovakya'nın Prag kentinde 5 Ekim 1781 günü doğdu. Babası bir İtalyan göçmeni ve küçük bir esnaftı. Annesi de, Prag' da madeni eşya ile ilgilenen bir ailenin kızıydı. Bolzano, Prag Üniversitesinde, felsefe, fizik, matematik ve ilahiyat çalıştı. 1807 yılında Prag'da aynı üniversiteye din ve felsefe profesörü olarak atandı. 1816 yılına kadar bu üniversitede başarılı dersler verdi. 1816 yılında, Hıristiyan kilisesince benimsenen inanç, duygu ve düşünceye ters düştüğü için, bu inançlarından dolayı suçlandı. 1820 yılında Avusturya hükümeti Bolzano'nun bu yıkıcı ve kendileri için kırıcı olan konuşmalarından dolayı onu ülkeden uzaklaştırdı. Bolzano, İtalyan asıllı bir Çek filozofuydu. Aynı zamanda iyi bir mantıkçı ve çok iyi de bir matematikçiydi. Bolzano, 1820 yılında daha çok akılcılıkla suçlandı. Onun matematiğe dayalı bir felsefesi ve düşüncesi vardı. Bu nedenle Kant'ın idealizmine karşı çıktı. Kendisi aslında bir Katolik papazıydı. 1805 yılından sonra, Prag Üniversitesinde din felsefesi okuttu. Matematikte, sonsuzluk ve sonsuz küçükler hesabı üzerinde çalıştı. "Sonsuzluk üzerine Paradokslar" adlı kitabı 1851 yılında yayınlandı. Noktasal kümeler üzerine de çalışmaları olmuştur.

Bolzano'nun en acıklı yılları, 1819 ile 1825 yılları arasına rastlar. Prag Üniversitesince, tam yedi yıl ders vermemek ve yayın yapmamak üzere cezalandırılır. Bu üniversitece profesörlüğü de elinden alınır. Tüm bu baskılara karşı onun yüksek kafası hiç durmadan çalışmıştır. Analizde, geometride, mantıkta, felsefede ve din üzerinde çok sayıda yayınını gerçekleştirmiştir. Bugün, analizde bildiğimiz ünlü Bolzano-Weierstrass teoremini ilk kez "Fonksiyonlar" adlı kitabında o kullandı. Fakat, teoremin ispatını daha önceki çalışmalarında yaptığını ve kaynak olarakta bu çalışmasını verir. Ancak, sözü edilen bu çalışma ve kaynak bugüne kadar bulunamamıştır. Çok kullanılan ve kendisinin de çok kullandığı bir teoremin ispatının Bolzano tarafından verilmiş olması olasılığı çok fazladır. Zaten bu teoreminin ispatı verilmeseydi Bolzano tarafından bu kadar çok kullanılmazdı. Sonraki yıllarda bu teoremin ispatı tam olarak Weierstrass tarafından verilmiştir. Bu nedenle bu teorem analizde Bolzano - Weierstrass teoremi adıyla bilinir.

Bolzano'nun temel çalışmaları, sonsuzlar paradoksu üzerinedir. Bolzano'ya yayın yapma yasağı konduğu için, yaşamı sürecinde bu eserlerini ne yazık ki yayınlayamamıştır. "Sonsuzlar Paradoksları" adlı çalışması ancak onun ölümünden iki yıl sonra 1850 yılında basılmıştır. Bu çalışması, sonsuz terimli serilerin birçok özelliğini içerir. Diğer birçok matematikçide olduğu gibi yaşam sürecinde çok hırpalanan, şanssızlıklar ve baskılarla horlanan Bolzano, 18 Aralık 1848 günü yine Prag'da öldü. Bugün hala, sınırlı ve sonsuz her dizinin en az bir yığılma noktası vardır teoremiyle anılır.

Bolzano, çalışmalarının birçoğu ile Weierstrass'a benzer. Çalışmalarının birçoğu zaten bu yöndedir. Çok sayıda ilginç ve kullanışlı fonksiyon örnekleri vardır. Bolzano' nun kümeler kuramındaki çalışmaları da Cantor'a benzer. Matematikteki özlü çalışmaları, sonsuzun paradoksu üzerine yoğunlaşır. Bu buluşlarının tümü ölümünden sonra yayınlanmıştır. Kendisi yayınlandığını görememiştir. Hiç bir yerde türevlenemeyip salınım yapan, x=0 noktasında sürekli olan fonksiyon örnekleri buldu ve bu fonksiyonların grafiklerini çizdi. Fakat, Bolzano'nun ispatı tam değildi. Ancak, bu soruya tam ve noksansız yanıtı veren fonksiyonu yine Weierstrass buldu.
 
Rene Baire (1874 - 1932)

Rene Baire, 1874 yılında Paris'te doğdu. Ecole Normal Superieure'de öğrenimini tamamladı. Daha sonra Dijon Fen Fakültesinin matematik analiz derslerini okuttu. Kendisi gibi Fransız matematikçileri olan Henri Poincare, Emil Borel ve Henri Lebesgue ile beraber gerçel değişkenli fonksiyonlar üzerinde yeni çığırlar açtı. Gerçel analiz üzerinde çok değerli kitaplar yazdı. Baire sınıfları oldukça Ünlüdür. 1932 yılında Chaber'de öldü.
 
1-Anaksagoras
Yunan Felsefecisi. MÖ 462 de yurdu olan Anadolu'dan Atina'ya göçtü. Anaksagoras tam anlamıyla bir akılcıydı. Ona göre yeryüzünü oluşturan süreç neysediğer gök cisimlerini oluşturanda oydu. Bu nedenle yeryüzü ile gökteki diğer cisimler aynı maddeden yapılmıştı. Yıldızlar gezegenler alev alev yanan kayalardan oluşuyordu. Güneşte yaklaşık Polonez(Mora Yarımadası) büyüklüğünde(21.000 km kare) akkor halinde bir kayaydı. Anaksagoras Atina'da 30 yıldan fazla hocalık yaptı. Ancak sonunda akılcılığını anlamayan ya da çekemeyen bağnaz resmi ideolojinin kurbanı oldu. Dinsizlikle suçlanarak tutuklandı ve mahkemeye verildi. Kendisi resmi ideolojiyle
mahkemelik olan bilim olan bilim adamlarından belkide ilkiydi. Arkadaşı ünlü devlet adamı Perikles'in üstün çabaları ve tanıklığı ile beraat etti ama Atina'da kalmadı. Hellespont'a çekildi ve
orada öldü
 
2-Janos Bolyai (1802-1860)
Macar matematikçisi. Gauss'un yakın arkadaşı olan bir matematikçinin oğludur. Babası Farkas Öklid'in paralellik aksiyomunu kanıtlaya bilmek için çok uğraşmış ancak başarısız olmuştur. Oğlunuda bir mektupla bu aksiyomla uğraşmaması için uyarmıştı ancak Janos babasına kulak asmamış ve 1823 yılında başarıya ulaşmıştır. Ve bu buluşunu babasının yazdığı bir kitapta 24 sayfalık bir ek olarak yayınlamıştır. Baba Bolyai kitabın bir kopyasını 1832 yılında arkadaşı Carl Friedrich Gauss'a sunar.Gauss'tan gelen yanıt ilginçtir : "Bu yapıtı övme gücünü kendimde
bulamıyorum (...).Onu övmek kendimi övmek gibi olacak. Çünkü yapıttaki her şey oğlunuzun izlediği yoloğlunuzun ulaştığı sonuçlar geçen 30 - 35 yıl boyunca zaman zaman zihnimi kurcalayan düşüncelerle hemen hemen çakışıyor." . Gauss bütün bunları daha önce bulmuştur; ama konu o kadar köktenci bir biçimde geometriyi sarsmaktadır ki bu buluşunu yayınlayacak cesareti
kendinde bulamamıştır. Bu mektubu alan Bolyai her şeyin Gauss tarafından zaten bilindiğini öğrenince tüm hevesini yitirir ve konuyla bir daha uğraşmaz. Bolyai buluşunun kendisinden 3 yıl önce Lobaçevski tarafından da yayınlandığını öğrenseydi daha da büyük düş kırıklığına uğrardı !
 
3-Diyofantus
Yunan matematikçisi. Yaşamı hakkında fazla bir şey bilinmiyor. Yunan matematiğine cebiri sokan kişi sayılır.Diyofantusmatematik problemlerinin çözümünde bugün cebirsel yöntem diye nitelendirebileceğimiz bir yöntem (ve buna bağlı olarak bir simgeler dizisi) geliştirdi. Diyofantus'un
yapıtları ortaçağ süresince Araplarca muhafaza edildi ve daha sonra 16.yüzyılda Latinceye çevrildi Diyofanrus'un en iyi bilinen çalışmaları çözümleri tamsayı olması istenen cebirsel denklemler üzerinedir. Bu gün bile bu tür denklemlere 'Diyofantus Denklemleri' adı verilmektedir.
 
4-Albrecht Dürer (1471-1528)
Alman Ressamı matematikçisi. Dürer gravür ve tahta baskı tekniğinin gelmiş geçmiş en büyük ustalarından biridir . Dürerin sanatla ilişkisi kendisini bilime itti.1525' te pergel - cetvel kullanarak çizim yöntemleri üzerine bir kitap yazdı. Kitap Perstektif sorunları ile ilgili ressamların kullanımı için hazırlanmıştı.Dürer aynı zamanda insan vücudunun oranları üzerinde de eserler verdi.
 
5-Leonhard Euler (1707 - 1783)
İsviçreli matematikçi .Basel Üniversitesinden 16 yaşından mezun olduktan sonra Rus Çariçesi 1.Katerina'nın St. Petesburg'da kurduğu akademide çalışmaya başladı (1727). Burada güneşi gözleyerek zamanın hassas bir biçimde saptanması üzerine çalışmalar yaptı.Bu çalışmalar sırasında güneşe çok uzun süreler bakması yüzünden sağ gözünü kaybetti.(1735).Euler 1741'de Berline gitti ve 1766 yılına kadar Bilimler Akademisinde kaldı.1766'da tekrar St. Petesburg'a dönen Euler yaşamının sonuna kadar burada kaldı. 1766 da öteki gözünü de kaybetti .Euler matematik tarihinin en üretken kişilerinden biridir. Matematiğin hemen hemen her dalında araştırma ve yayın yaptı. Yaşamı boyunca 800'den fazla makale yayınladı. Matematik biliminde uçsuz bucaksız katkılarının yanı sıra Euler aynı zamanda bugünde kullandığımız matematiksel simgelerin de babasıdır:bunların arasında p (dairenin çevresinin çapına oranı) e (doğal logarinmanın tabanı) i (birim sanal sayı Ö-1 ) ve f(.) (fonksiyon) sayılabilir .
 
6-Pierre De Fermat (1601 - 1665)
Fransız matematikçisi. Hukuk okudu ve 1631 'de Orleans Üniversitesi'ni bitirdi. Daha sonra Toulouse kent meclisinde üyelik yaptı..1638 yılında ağır ceza mahkemesine atandı.Fermat amatör bir matematikçiydi. Ancak genede 17.yüzyılın ilk yarısının en önde gelen iki matematikçisinden biridir (öteki matematikçi René Descartes'tir). Fermat "Diyofantus Denklemleri" üzerine çalışarak modern sayılar kuramının temellerini attı. Onun geliştirdiği sayılar kuramı daha da ileriye gitmek
için bir yüzyıl sonra Euler'i beklemek zorunda kalacaktır.Descartes'tan bağımsız olarak analitik geometriyi kurdu. Eğrilerin teğetlerinimaksimumlarını minimumlarını bulmak için yöntemler geliştirdi;böylece diferensiyel hesabının temellerini attı.Blaise Pascal'la yazışarak olasılık kuramını kurdu. Fermat buluşlarını yayınlamayı savsaklayan düzenli not tutmayan kitapların kenarlarına acele notlar alan buluşlarını arkadaşlarına alelade mektuplarla bildiren savruk biriydi. Bu yüzden
analitik geometrinin kurucusu olarak Descartes'i diferensiyel hesabının başlatıcısı olarak da Newton'u biliyoruz bugün. O bir amatördü. Günümüzde de 'amatörlerin prensi' olarak bilinir
 
7-Johann Karl Friendrich Gauss (1777 - 1855) Alman matematikçisi Gauss gerçek bir dâhiydi.1795'te Braunschweig Dükü Ferdinand'ın
desteğiyle Göttingen Üniversitesi'ne girdi.1799'da 'cebirin temel teoremi' olarak bilinen ve 'n inci dereceden bir cebirsel denklemin n tane kökü vardır' şeklinde ifade edebilen teoremi kanıtlayarak doktora derecesini aldı.Gauss matematiğin hemen her dalında ürün verdi.1801' de aritmetiğin temel teoremini kanıtladı : Her doğal sayı asl sayıların çarpımı olarak bir ve yalnız bir şekilde gösterile
bilir.GaussFermat'nın başlattığı sayılar kuramında önemli çalışmalar yaptı. Gauss aynı zamanda Öklid'in aksiyomlarını değiştirerek bir Öklid dışı geometri geliştirdi. Ancak bu buluşunu yayınlamaya cesaret edemedi. Bu nedenle bu konuda yayın yapamn Lobaçevski ve BolyaiÖklid dışı geometrilerin kurucusu olarak bilinirler. Gauss yerin magnetik alanı üzerine de çalışmalar yaptı.
Bu çalışmalar için üniversitede bir gözlemevi kurdu ve yerin magnetik kutuplarının yerlerini saptadı. 1832'de magnetik olayların sa ölçülmesini olanaklı kılan bir birimler sistemi geliştirdi. Bu nedenle mağnetik akı birimine 'gauss' adı verildi. 1833'te telgraf cihazı yaptı. Gauss üniversitede dah
öğrenciyken pergel - cetvel kullanarak bir düzgün on yedigenin nasıl çizileceğini bulmuştu. Ayrıca
daha da ileri giderek pergel - cetvel kullanılarak her çokgenin çizilemeyeceğini yalnızca belirli çokgenlerin çizilebileceğini göstermişti. Bu nedenle bugün doğduğu kent Braunschweig'de Gauus'un 17 köşeli yıldız şeklinde bir kaide üzerinde yükselen bir heykeli bulunmaktadır.
 
Geri
Top