Herkesin Bilmesi Gereken Temel Evrimsel Konular

  • Konuyu açan Konuyu açan dderya
  • Açılış tarihi Açılış tarihi
Abiyogenez - 1: Kimyasal Evrim, Canlılık ve Cansızlık Tanımları
(-alıntıdır-)



Evrim Kuramı'nı inceleyen her birey, mutlaka bu araştırmalarının bir noktasında, "en başa gitme" merakımızdan ötürü canlılığın başlangıcına, en başa, ilk canlının oluştuğu noktaya ulaşmış bir vaziyette bulacaktır kendini. Bu noktada kafalar iyice karışacak, evrim tam olarak anlaşılmış olsa bile "ilk canlı"nın nasıl var olabileceği cevapsız kalıyormuş gibi bir yanılgıya düşülecektir. Halbuki bilim, halen üzerinde tartışıyor olmakla birlikte, canlılığın başlangıcı sorusuna oldukça net, en azından bilimsel mantık ve şüphe sınırları dahilinde tatmin edici cevaplar bulmuştur. Bu cevaplar, tam da beklendiği gibi, herhangi bir doğaüstüne işaret etmemekle birlikte, tam tersine yüzyıllardır süregelen "metalaştırma" ve "üstünleştirme" merakımızı yerle bir eden bir şekilde, canlılığı sıradanlaştırmakta ve oldukça basit kavramlardan yola çıkarak açıklamaktadır. Ve hatta artık modern bilim, bu yazı dizimizde de açıklayacağımız üzere, anlaşma kolaylığı amacıyla kullanılan haricinde, bilimsel olarak "canlılık" ve "cansızlık" kavramlarını birbirinden ayırmamakta, bir arada kullanmaktadır. Yani günümüzde artık "canlı" ya da "cansız" diye bir ayrımdan, en azından bilimsel olarak, bahsedilmemektedir. Günlük kullanımda halen belirli tip varlıkları belirtmek amacıyla bu kelimelere yer verilmektedir; ancak ana konu eğer "canlılık kavramı" olacak ise, biyologların çoğu canlılık ile cansızlık arasında bir ayrıma gitmekten uzak durmakta, bu ikisi arasında belirgin bir çizgi olmadığını açıkça ifade etmektedirler. Zaten yazı dizimiz süresince bu gerçekle sizi yüz yüze getireceğiz.


En başından itibaren unutmamak gerekir ki aslında canlılığın başlangıcı, Evrim Kuramı'nın ilgi alanında değildir! Evrim Kuramı, canlılığın "bir şekilde" başlamasından sonra, nasıl çeşitlendiği ile ilgilenmektedir. Canlılığın ilk başlangıcı ile ilgilenen bilim biyokimya ile bu bilim dalının altında yer alan Abiyogenez Kuramı'dır. Dolayısıyla evrimsel biyoloji ile ilgili bir tartışmada, karşınızdaki kişi evrimin canlılığın başlangıcını açıklayamadığını iddia edecek olursa, "Evet, çünkü evrimsel biyolojinin konusu bu değil." demeniz yeterli olacaktır. Bilim, bir bütün olarak, canlılığın cansızlıktan nasıl evrimleştiğini (burada neden "evrimleşmek" dediğimizi izah edeceğiz) gayet net biçimde açıklayabilmektedir. Ancak bununla ilgili bilim dalı evrimsel biyolojinin kendisi değildir.

Elbette ki, Evren'deki her şey gibi, canlılığın başlangıcı da bilimsel bir perspektiften ele alınmalıdır. Zira yine Evren'deki her şey gibi, canlılığın ilkin başlangıcı da doğaüstüne ihtiyaç kalmaksızın, tamamen doğal açıklamalarla izah edilebilmektedir. Biz bu yazı dizimizde, size bu izahlardan günümüzde en güçlüsü olarak karşımıza çıkan Abiyogenez Kuramı'ndan, yani "canlılığın", "cansızlıktan" evrimleşerek başladığını konu edinen kuramdan yola çıkarak açıklamalarda bulunacağız. Yukarıda, canlılığın cansızlıktan "evrimleşmesi" dedik, çünkü gerçekten de evrimsel süreci andıran bir kimyasal evrim süreci söz konusudur. Bu evrim, biyolojik evrim ile birebir aynı olmasa da, aradaki analojileri görmek oldukça kolaydır. Üstelik günümüzde, evrimsel biyoloji o kadar güçlü bir bilim dalı haline gelmiştir ki, birçok diğer bilim dalı gibi biyokimya da evrimsel biyolojiden gücünü alır hale gelmiştir.


Bu yazı dizimizde sizlere insanlar olarak bizlerin "canlılık" dediğimiz olayın, "cansızlık" olarak tabir ettiğimiz formdan nasıl evrimleştiğini açıklamaya çalışacağız. Hemen her şeyi adım adım göstermeye çalışacağız, böylece popüler kültürde ciddi bir biçimde abartılan ve abartılagelmiş olan "canlılık" kavramının, aslında o kadar da özel olmadığını ve cansızlıktan evrimleşmesinin sanıldığı kadar zor bir olay olmadığını göreceksiniz. Bu ilk yazımızda, sizlere doğrudan canlılık ile cansızlık kavramlarının nasıl birbirinden tamamen farksız olduğunu göstereceğiz.



Kavramların gerçek anlamlarını öğrenebilmemiz gerçekten çok önemli, çünkü ne yazık ki eğitim sistemimiz terimleri doğru bir şekilde öğretebilmekten çok çok uzak. Pek çok kavram, eğitim hayatımız boyunca yanlış ve "sınava yönelik" öğretiliyor. Ne var ki bilim, eğitim sistemimizin sandığından ve bildiğinden çok çok ileride. Bu sebeple bazı düzeltmeler yapmamız ve akıllarda oluşturulan bazı anlamsız tabuları kırmamız gerekiyor. Belki de, bu kavramların en başında "canlılık" ile "cansızlık" ayrımı geliyor. Buna Evrim Mekanizmaları ile ilgili yazılarımızda tekrar değineceğiz; esasında orası için ayırdığımız bir açıklamayı, burada, en başından yapmak istiyoruz; çünkü "canlı" ve "cansız" ayrımını anlamak, belki de Biyoloji'yi anlayabilmenin ve Evrimsel Biyoloji'yi kavrayabilmenin başında geliyor. Öyleyse lafı daha fazla uzatmadan başlayalım:



İlk olarak, bilimsel olarak hiçbir şey, esasında, ne "canlı"dır, ne de "cansız"dır. İnsanoğlu, etrafına bakıp varlıkları sınıflandırmak istemiş ve belli başlı özellikler taşıdığı için bazı varlıklara "canlı" demiş, bu özellikleri taşımayan varlıklara ise "cansız" demiştir. İnsanın tanımına göre, bu canlı-cansız farkına sebep olan belli başlı özellikler şöyle sıralanabilir:


  1. Uyarana tepki gösterme
  2. Üreme
  3. Büyüme ve Gelişme
  4. İç Dengeyi Koruma
  5. Belli bir organizasyona sahip olma
  6. Metabolik faaliyetleri gerçekleştirme ve enerji üretme
  7. Adapte olabilme
Eski dönemlere ait kaynaklara göre bu özelliklerin hepsini bir arada bulunduran varlıklar "canlı", bunları bir arada bulundurmayan varlıklar ise "cansız" varlıklardır. Kimi kaynak bunlardan sadece ilk 4'ünü canlılık belirtisi olarak yeterli bulmaktadır ve diğerlerini elemektedir. Ancak uzun on yıllardır (ve hatta geniş skalada yüz yıllardır) bu tanımlama sürekli olarak tartışılmıştır ve hala da, azalmakla birlikte, tartışılmaya devam etmektedir. Çünkü bazı "cansız" olarak görülen varlıklar ciddi biçimde "canlı" gibi gözüken özelliklere sahip olabilmektedir Örneğin virüsler ve priyonlar hakkında keşfettiklerimiz, bu tanım için giderek başa bela bir hal almışlardır. Modern zamanlarda yapılan deneylerle cansızlıktan canlılığın laboratuvar koşullarında yaratılabileceğine dair ilk verileri toplamamızla birlikte de iş, içinden çıkılmaz bir hal almıştır.
Aslında insanlar binlerce yıl öncesinden beri, yukarıda belirttiğimiz özellikleri taşıyan varlıklarda bir "can" (halk arasındaki kullanımı hatırlarsak: insan için "ruh", diğerleri için "can") olması gerektiğini düşünmüştür. Çünkü insanlara göre, bir maddeye böyle bilinçli ya da bilinçli-benzeri davranışları katan şey fizik-üstü bir olay olmalıydı. İlk doğduğu zamanlarda bilimsel çalışmalarda da bu kavramlara yer verilmiş, böylece günümüze kadar gelecek terminoloji, hatalı içerikte de olsa bilime yerleşmiştir.



Halbuki, modern bilim açısından, günlük ağzın aksine bu kavramların (ne "can", ne de "ruh") hiçbir geçerliliği bulunmamaktadır ve hatta bunların gerçek olmadıkları artık bilinmektedir. Biyoloji'nin derinliklerine inen bilim insanları, önce organlarımızı, sonra dokularımızı, sonra hücrelerimizi keşfetmiştir. Buraya kadar her şey "canlı" gözükmektedir ve bu yüzden tanımlamada bir sıkıntı bulunamamıştır. Ancak daha da derinlere indiğimizde, hücrelerin içerisindeki neredeyse her olayı gözlemleyebilir hale geldik. Ve bu boyutta, hücrelerimizin içerisinde faaliyet gösteren yapıları incelediğimizde, bir canlı ile cansızı ayırmanın olanaksız olduğunu fark ettik. Yani hücresel boyuta kadar her şey canlı gibi gözüküyor olsa da, hücre altı boyutta keşfettiğimiz her şeyin, normalde "cansız" olarak nitelediğimiz moleküller ve atomlar yığını olduğunu gördük.


İşte o zaman anlamaya başladık: Gerçekte, Evren'in özünde aradığımız gibi bir canlı-cansız farkı bulunmuyor. Çünkü bu iki kategori de, belli başlı fiziksel ve kimyasal tepkimeler sonucu oluşan ve varlığını sürdüren yapılardır. Bir demir, oksijenin bulunduğu uygun bir ortamda sürekli tepkimeye girerek paslanmaktadır. Aynı oksijen, hücrelerimiz içerisinde bulunan bir diğer kimyasal olan şekerler ile tepkimeye girerek enerji üretimini sağlamakta ve bu, hücrenin "canlılığını" sürdürmektedir. Peki, demiri "cansız", hücreyi "canlı" yapan nedir öyleyse? İnsanlığın uydurduğu tanımlar haricinde, hiçbir şey. İkisi de, sıradan atomlar ve moleküller yığınıdır. Tek fark, bu kimyasal tepkimelerin toplamı, eğer oluşturduğu veya içerisinde bulunduğu varlığa yukarıda sayılan belli başlı özellikleri kazandırıyorsa, o varlık bizim için "canlı" olmaktadır. Bu, insanın kendince uydurduğu asılsız (ancak günlük iletişimde işe yarar) bir sınıflandırmadır.



Buraya kadar anlattıklarımız anlaşılabildiyse, şimdi yıllardır öğrenegeldiğimiz kalıpları yıkmaya başlayabiliriz. Bunu yapmak sandığınızdan kolay olacak. Her ne kadar yukarıda verdiğimiz liste, neredeyse her birey ve hatta eğitim sistemimiz tarafından benimsenmiş olsa da, bunların esasında ne kadar cansız şekillerde meydana geldiğini göreceğiz. Eğer ki yukarıda sayılanlar canlılığa "canlılık katan" niteliklerse, o zaman bu maddelerin oluşumlarının temelinde cansız süreçler bulmamamız gerekir. Halbuki az sonra göreceğiniz gibi gerçek, beklediğimizin tam zıttıdır.


Şimdi her birine tek tek ve mümkün olduğunca kısaca bakarak, büyük ölçekte baktığımızda canlılığın sözde "tartışılmaz" ilkeleri olan bu maddelerin, moleküler düzeyde cansızlıktan nasıl ayıramayacağımızı görelim
 
Kaynaklar ve İleri Okuma:
  1. Biogenesis, abiogenesis, biopoesis and all that, Carl Sagan, Origins of Life and Evolution of Biospheres, Volume 6, Number 4 (1975), 577, DOI: 10.1007/BF00928906
  2. Conversion of light energy into chemical one in abiogenesis as a precondition of the origin of life, T.E. Pavloyskaya, T.A. Telegina, Origins of Life and Evolution of Biospheres, Volume 19, Numbers 3-5 (1989), 227-28, DOI: 10.1007/BF02388822
  3. Abiogenesis and photostimulated heterogeneous reactions in the interstellar medium and on primitive earth: Relevance to the genesis of life,A.V. Emeline et al., Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Volume 3, Issue 3, 31 January 2003, Pages 203–224
  4. The possibility of nucleotide abiogenic synthesis in conditions of “KOSMOS-2044” satellite space flight,E.A. Kuzicheva, Advances in Space Research, Volume 23, Issue 2, 1999, Pages 393–396
  5. The emergence of the non-cellular phase of life on the fine-grained clayish particles of the early Earth's regolith, Mark D. Nussinov, et al., Biosystems, Volume 42, Issues 2–3, 1997, Pages 111–118
  6. Models for protocellular photophosphorylation, Peter R. Bahn, et al., Biosystems, Volume 14, Issue 1, 1981, Pages 3–14
  7. Evolution and self-assembly of protocells,Richard V. Sole, The International Journal of Biochemistry & Cell Biology, Volume 41, Issue 2, February 2009, Pages 274–284
  8. Sufficient conditions for emergent synchronization in protocellmodels, Journal of Theoretical Biology, Volume 254, Issue 4, 21 October 2008, Pages 741–751
  9. The emergence of ribozymes synthesizing membrane components in RNA-based protocells,Wentao Ma, et al., Biosystems, Volume 99, Issue 3, March 2010, Pages 201–209
  10. The “protocell”: A mathematical model of self-maintenance,Helmut Schwegler, et al., Biosystems, Volume 19, Issue 4, 1986, Pages 307–315
  11. Computational studies on conditions of the emergence of autopoietic protocells,Naoaki Ono, Biosystems, Volume 81, Issue 3, September 2005, Pages 223–233
  12. Bifurcation for a free boundary problem modeling a protocell,Hua Zhang, et al., Nonlinear Analysis: Theory, Methods & Applications, Volume 70, Issue 7, 1 April 2009, Pages 2779–2795
  13. Protocell self-reproduction in a spatially extended metabolism–vesicle system,Javier Macia, et al., Journal of Theoretical Biology, Volume 245, Issue 3, 7 April 2007, Pages 400–410
  14. A nonlinear treatment of the protocell model by a boundary layer approximation,Kazuaki Tarumi, et al., Bulletin of Mathematical Biology, Volume 49, Issue 3, 1987, Pages 307–320
  15. A model for the origin of stable protocells in a primitive alkaline ocean,W.D. Snyder, et al., Biosystems, Volume 7, Issue 2, October 1975, Pages 222–229
  16. Facilitated diffusion of amino acids across bimolecular lipid membranes as a model for selective accumulation of amino acids in a primordial protocell,William Stillwell, Biosystems, Volume 8, Issue 3, December 1976, Pages 111–117
  17. The origins of behavior in macromolecules and protocells,Sidney W. Fox, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, Volume 67, Issue 3, 1980, Pages 423–436
  18. Self-organization of the protocell was a forward process,Sidney W. Fox, Journal of Theoretical Biology, Volume 101, Issue 2, 21 March 1983, Pages 321–323
  19. From prebiotic chemistry to cellular metabolism—Thechemicalevolution of metabolism before Darwinian natural selection,Enrique Melendez-Hevia, et al., Journal of Theoretical Biology, Volume 252, Issue 3, 7 June 2008, Pages 505–519
  20. Natural selection in chemical evolution,Chrisantha Fernando, et al., Journal of Theoretical Biology, Volume 247, Issue 1, 7 July 2007, Pages 152–167
  21. Chemical evolution of amino acid induced by soft X-ray with synchrotron radiation,F. Kaneko, et al., Journal of Electron Spectroscopy and Related Phenomena, Volumes 144–147, June 2005, Pages 291–294
  22. Radiation-induced chemicalevolution of biomolecules,Kazumichi Nakagawa, Radiation Physics and Chemistry, Volume 78, Issue 12, December 2009, Pages 1198–1201
  23. Evolution of DNA and RNA as catalysts for chemical reactions,Andres Jaschke, et al., Current Opinion in Chemical Biology, Volume 4, Issue 3, 1 June 2000, Pages 257–262
  24. Anatomical correlates for category-specific naming of living andnon-living things,Carlo Giussani, et al., NeuroImage, Volume 56, Issue 1, 1 May 2011, Pages 323–329
  25. Formamide in non-life/lifetransition,Raffaele Saladino, et al., Physics of Life Reviews, Volume 9, Issue 1, March 2012, Pages 121–123
  26. Major life-history transitions by deterministic directional natural selection,Lars Witting, Journal of Theoretical Biology, Volume 225, Issue 3, 7 December 2003, Pages 389–406
  27. From the primordial soup to the latest universal common ancestor,Mario Vaneechoutte, et al., Research in Microbiology, Volume 160, Issue 7, September 2009, Pages 437–440
  28. How life evolved: Forget the primordial soup,Nick Lane, The New Scientist, Volume 204, Issue 2730, 14 October 2009, Pages 38–42
  29. Modelling the early events of primordial life, Yu. N. Zhuravlev, et al., Ecological Modelling, Volume 212, Issues 3–4, 10 April 2008, Pages 536–544
  30. From a soup or a seed? Pyritic metabolic complexes in the origin of life, Matthew R. Edwards, Trends in Ecology & Evolution, Volume 13, Issue 5, May 1998, Pages 178–181
  31. Self-organization vs. self-ordering events in life-origin models,David L. Abel, Physics of Life Reviews, Volume 3, Issue 4, December 2006, Pages 211–228
  32. The steroid receptor RNA activator is the first functional RNA encoding a protein,S. Chooniedass-Kothari, et al., FEBS Letters, Volume 566, Issues 1–3, 21 May 2004, Pages 43–47
  33. RNA, the first macromolecular catalyst: the ribosome is a ribozyme,Thomas A. Steitz, et al., Trends in Ecology & Evolution, Volume 28, Issue 8, August 2003, Pages 411–418
  34. Did the first virus self-assemble from self-replicating prion proteins and RNA?,Omar Lupi, Medical Hypotheses, Volume 69, Issue 4, 2007, Pages 724–730
  35. Characters of very ancient proteins,Bin Guang-Ma, et al., Biochemical and Biophysical Research Communications, Volume 366, Issue 3, 15 February 2008, Pages 607–611
  36. Simple coacervate of pullulan formed by the addition of poly(ethylene oxide) in an aqueous solution,Hiroyuki Ohno, et al., Polymer, Volume 32, Issue 16, 1991, Pages 3062–3066
  37. Preparation of polyacrylamide derivatives showing thermo-reversible coacervate formation and their potential application to two-phase separation processes,Hiroaki Miyazaki, et al., Polymer, Volume 37, Issue 4, 1996, Pages 681–685
  38. Coacervate complex formation between cationic polyacrylamide and anionic sulfonated kraft lignin,Alois Vanerek, et al., Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 273, Issues 1–3, 1 February 2006, Pages 55–62
  39. Complex coacervates as a foundation for synthetic underwater adhesives,Russell J. Stewart, et al., Advances in Colloid and Interface Science, Volume 167, Issues 1–2, 14 September 2011, Pages 85–93
 
Abiyogenez - 3: Nükleotitler, Genler, DNA, Kromozom ve Diğer Genetik Yapıların Özellikleri ve İşleyişi

Son iki yazımızda sizlere "canlılık" ve "cansızlık" kavramları arasındaki farksızlıktan ve "Hayat Molekülleri" dediğimiz, kategorizasyon açısından kolaylık sağladığı için öyle isimlendirdiğimiz "canlı" yapılarda bulunan kimyasalların 3 büyük grubundan bahsettik. Bunların nasıl doğal yollarla oluşabildiğinden ve hangi doğal tepkimelerle, hiçbir dış müdahaleye gerek kalmaksızın, kendiliğinden (spontane olarak) var olabileceklerini izah ettik. Bu yazımızda ise, geçen yazımızda belirttiğimiz gibi, Hayat Molekülleri içerisinde bulunan ve ayrıca canlılığın cansızlıktan evrimi açısından çok büyük öneme sahip olan bir diğer yapı, nükleotitlerden ve bu nükleotitlerin oluşturduğu dev moleküller olan genetik materyalden bahsedeceğiz. Ayrıca bunu yaparken, birçok diğer konu ve kavrama değinecek, akıllardaki bilim dışı düşünceleri silmeye çalışacağız.

Canlılık ile cansızlık arasında bir fark olmadığını anlayabilen biri, geri kalan pek çok şeyi kolaylıkla kavrayabilecektir. Bunların başında da, canlıları "canlı" yapan moleküller, bunların yapıları ve görevleri gelmektedir. Dediğimiz gibi canlıları ayırt eden en önemli özellik, hayatta kalmak ve üremek amacıyla organizasyonları dahilinde aktivite gerçekleştirebilmeleri ve bu aktivitenin artan entropiye karşı koymak için enerji sarf edebilir nitelikte olmasıdır. İşte tüm bu organizasyon içi aktiviteler ve üremenin aşamaları, genetik materyal olan nükleotitler ve bunların oluşturduğu daha büyük kimyasallarla düzenlenmekte ve kontrol edilmektedir.

Bu olay, insanı var olduğundan beri etkilemektedir ve birikerek günümüze gelen bu "büyüleyicilik", günümüz insanlarının genetik materyallere ve genel olarak hücreleri meydana getiren kimyasal moleküllere olduğundan fazla anlam yüklemesine sebep olmaktadır. Kişiler DNA'nın "mükemmel" bir molekül olduğunu sanmakta, DNA tarafından üretilen enzimlerin "ulaşılamaz" bir iş yaptıklarını düşünmekte, hücrenin içinin "gerçek olamayacak kadar karmaşık" olduğunu iddia etmektedirler. Bunlar, bir yere kadar doğru olsa da, bilimsel olarak açıklanamayacak kadar "mükemmel", "ulaşılamaz" ya da "karmaşık" olan hiçbir yapıya doğada rastlanmaz. Zaten bilim, doğayı anlama sanatıdır ve doğada doğayla (bilimle) izah edilemeyecek ve doğal süreçlerle oluşamayacak bir şey bulmayı beklemek anlamsızdır.

Şimdi, başlıkta da belirttiğimiz molekülleri tanıtmaya ve incelemeye başlayalım, böylece ne demek istediğimizi kolaylıkla anlayacaksınız. Madem DNA'ya değindik, öncelikle herkesin popüler olarak bildiği bu kimyasal madde ile tanışalım:

DNA dediğimiz moleküller zincirinin uzun adı; Deoksiribo Nükleik Asit’tir. Kimya konusunda bilgisiz olan biri ilk bakışta anlayamayabilecek olsa da ve bu ismin çok gizemli ve özel bir anlama geldiğini sanacak olsa da, DNA son derece sıradan, kimyasal bir moleküldür. Kimya bilimi dahilinde bütün moleküller bu şekilde uzun, tanımlayıcı ve dışarıdan duyanlar için bir miktar da "artistik" gelebilecek isimler alırlar. Örneğin sıradan bir kimyasal olan bir diğer maddenin adını verelim: Trifluoromethanesulfonate. Hele ki eğer DNA'nın adını karmaşık buluyorsanız, bir de her gün yudumladığınız kahvenizin içerisinde bulunan "kafein"in kimyasal adını deneyin: 3,7-dihidro-1,3,7-trimetil-1H-pürin-2,6-diyon!

Yani DNA, ne özel bir isimdir, ne de özel bir artısı vardır. DNA’yı belki de "özel" kılan tek şey, her kimyasal maddenin kendine ait bir özelliği olduğu gibi, DNA’nın da kendine ait bir özelliği olması ve bu özelliğin, bizim ilgimizi çeken bir şekilde, kalıtım alanında "görev alması"dır (bu noktalarda neden vurgular yaptığımızı bir sonraki yazımızda izah edeceğiz). Yani örneğin gözlerinizin ıslak kalmasını sağlayan gözyaşınızın da kimyasal bir formülü bulunur. Tek fark, gözyaşınızın gözlerinizi korumak ve duygularınızı belli etmek gibi görevleri varken, DNA’nın bir sonraki kuşağa aktaracağınız bilgileri taşıma görevi olmasıdır. DNA’yı spot ışıklarının karşısına koyan bu kalıtımsal özelliğidir; ne daha azı, ne daha fazlası. Aslında düşünüldüğünde, bunun da "özel" olmadığı görülecektir. Çünkü zaten "kalıtım" dediğimiz olay da, biyokimyasal bir tepkime sonucunda, bir molekülün kendisini eşlemesi ve çoğalması demektir. Bunun da herhangi bir özel yanı bulunmamaktadır.

Aşağıda, en sık karşılaşabileceğiniz temsili bir DNA çizimini görüyoruz. Gördüğünüz gibi DNA, ikili bir sarmaldan oluşur. Yani iki farklı doğru, birbiri etrafında kıvrılarak heliks bir yapıya bürünür:

Bu yapı, tamamen fizik ve kimya yasaları etkisi altında bu şekilde olmaktadır. Nasıl ki, daha önce de kısaca değindiğimiz gibi yağlar, su içerisinde mecburen küresel bir yapı oluşturuyorlarsa, bu yapıdaki kimyasal da mecburen heliks (sarmal) yapısı oluşturmaktadır. Dolayısıyla şekil açısından da DNA'nın diğer moleküllerden bir farkı yoktur.

Bu çizim her ne kadar genel yapı hakkında bilgi verse de ve bu şekilde çizilmesi çizerler için oldukça kolay olsa da, molekülleri sanki özel ya da başka varlıklardan farklıymış gibi göstermesinden ötürü, biz bu "kapalı çizim" yöntemini tercih etmiyoruz. Bir aşağıdaki resmi incelerseniz, farkı anlayacaksınız. Aşağıdaki çizimde, DNA’nın gerçek yapısı görülmektedir. DNA da, Evren içerisindeki diğer bütün varlıklar gibi, yalnızca ve yalnızca sıradan atomlardan ve bunların farklı kombinasyonları olan moleküllerden oluşur. Bu atomlar temel olarak Karbon (C), Hidrojen (H), Azot (N), Fosfat (P), Oksijen (O) ve benzeridir ve her bir atom, aşağıda farklı renklerle gösterilmişlerdir:

DNA, sadece arka arkaya, birbirlerine zayıf veya kuvvetli kimyasal bağlar ile bağlanmış atomlardan ibarettir.

Peki DNA, genetik olarak en küçük kalıtsal yapıtaşımız mıdır? Elbette hayır, DNA zinciri de daha küçük parçalara bölünebilir. Bu daha küçük parçalara “nükleotit” denir (ki nükleotitler, daha önce de söylediğimiz gibi "Hayat Molekülleri" arasında yer alır) ve bu moleküller, DNA sarmalını bir merdivene benzetecek olursak, merdivenin basamaklarını oluşturur. Nükleotitler, kalıtım bilimi için oldukça önemlidirler. Çünkü temel olarak, bilgiyi "taşıyan" parçalar nükleotitler ve bunların dizilimleridir. Nükleotitlerin farklı dizilimi, farklı anlamlar ifade eder. Dolayısıyla nükleotitleri, eğitim hayatımızda da ezberlettikleri gibi "harfler" olarak düşünebiliriz. Bu harfler, farklı şekillerde dizilerek, farklı kelimeler, farklı anlamlar ifade ederler.

Tıpkı bizim günümüzde kullandığımız son derece kompleks bilgisayar yazılım dilleri gibi, genetik olarak hücrelerimiz de bir şifreleme kullanırlar. Bu şifreleme dilindeki harf sayısı, günümüz modern dillerine göre çok çok az olmakla birlikte, bu az sayıda harfin kodlayabileceği komut sayısı sınırsızdır.

Bunu bilgisayar üzerinden örnek vererek anlatabiliriz: Bilgisayar programcıları, bilgisayarları programlamak için C, C++, Basic, vb. diller kullanırlar. Bu diller, İngilizce’ye oldukça benzerler, çünkü bu programlama dillerini yazan programcılar tarafından, günlük konuşma diline oldukça yakın olacak şekilde ayarlanmışlardır. İlk bilgisayar yazılımları, kesinlikle böyle basit bir dil kullanmamaktaydı ve mühendisler tek tek "1" ve "0"ları kullanarak programlama yapmaktaydılar. Sonrasında, "bilgisayarların evrimi" sırasında yeni programlar yazıldı. Bu programlar, "programı programlamaya" yarıyordu. Temel olarak yaptıkları şuydu: İngilizceye benzer kelimeleri kullanabileceğiniz bir arayüz sağlamak. Programcı, bu arayüze kolay kelimeleri yazmaktadır; arka planda ise program bunu yine "1"ler ve "0"lara çevirip işlemciye gönderir. Dolayısıyla yüklenen bilgi, makinelerin o dili anlamak amacıyla üretilmelerinden ötürü işlenmekte ve bilgi, işleve dönüşmektedir.

Örneğin klavyede yazdığınız bir kelimenin ekranda çıkabilmesinin tek nedeni, bastığınız her bir tuşun bilgisayara elektriksel sinyal olarak bir “komut” göndermesi ve bilgisayarın monitörde bulunan küçük, ışık saçan LED’lerden birini ya da birkaçını, uygun renkte yakmasından ibarettir. Bilgisayar ekranını güçlü bir büyüteçle incelerseniz, ne demek istediğimizi anlayabilirsiniz. Klavyenizden giden elektrik sinyalleri, öncelikle bilgisayarınızın işlemcisinde değerlendirilirler (içerisindeki kod dahilinde) ve işlemci, ekrana yapması gereken işi bildirir. Tüm bunlar, programcıların işlemciye bahsettiğimiz dilleri kullanarak yazdıkları programların, yani "bilgisayarların genetik materyali" dahilinde olmaktadır.

İşte nükleotitlerin farklı dizilimleri sonucu oluşan "anlamlı bütünler" ise (bunlara "gen" diyeceğiz), farklı işlemleri yapmak için özelleşmiş kodlar gibidir. Buna az sonra geleceğiz, öncelikle bir noktayı aydınlatalım:

Tabii ki bilgisayarlar, insanlar tarafından "tasarlanan" makinalar olduğu için, canlılığı betimlemekte kullanmak çok da doğru değildir. Zira canlılık, insan zekası tarafından son 50-60 yılda var edilen bilgisayarın aksine, yaklaşık 600 milyon yıl boyunca, akıl almaz sayıda denemeler sonucunda, adım adım evrimleşerek, elenerek, seçilerek oluşmuştur. Bilgisayarın parçaları evrimleşemez, çünkü biyokimyasal bir alt yapısı bulunmayan malzemelerden üretilmektedir. Yani bilgisayarı üreten yapıtaşları canlılık kriterlerini sağlamaz. Bu yüzden etraftaki biyolojik olmayan teknoloji unsurlarının tasarımcılarının olması, doğadaki biyolojik yapıların da tasarımcılarının olması anlamına gelmemektedir. Bu, hatalı bir genellemedir. Yani karmaşık bir yapı evrimsel ve doğal süreçlerle pek tabii var olabilir. Doğada bir "bilgisayar" elbette ki evrimleşemeyecektir; çünkü bilgisayar ne biyolojik bir yapıya sahiptir, ne de böyle bir yapının evrimleşmesi için gerekli çevresel baskı bulunmaktadır. Ancak örneğin doğada, biyolojik yapıya sahip ve bulunduğu türlere avantaj sağlayan, çoğu zaman bilgisayarlardan bile başarılı bir yapı evrimleşmiştir: beyin. Dolayısıyla, insan üretimi olan bir yapının doğada olmamasıyla, evrimsel süreçlerin bu tip karmaşık yapıları yaratamayacağını ispatlamaya çalışmak akıl dışıdır.
 
Bilgisayarda olduğuna benzer bir şekilde, canlılar da 4 harften oluşan bir dil kullanır ve her bir harf, bir nükleotit tipini temsil eder. Bu harfler, “A” (Adenin), “T” (Timin), “C” (Sitozin) ve “G” (Guanin)'dir. Elbette ki aslında gerçekte hiçbir kimyasal üzerinde böyle harfler bulunmamaktadır. Bu isimleri onlara biz, sonradan verdik. Zira bu bahsedilen harfler, yalnızca kimyasal bazı yapılardır ve bir sonraki yazıda daha detaylı açıklayacağımız gibi, aslında önceden belirlenmiş bir "görev"leri bulunmaz.
Peki, DNA'daki bilgileri taşıyan yapıtaşları, daha doğrusu "harfler" dediğimiz yapı taşları nelerdir?

Bu harfler, nükleotit denen DNA’nın küçük parçalarının, bildiğimiz, kimyasal bir madde olan “baz” kısmında bulunan bir dizilimdir. Bu dizilimde karbon, hidrojen, vb. atomlar bulunur. Bu atomlar belirli bir şekilde dizilirse, ona Adenin (A) deriz. Başka bir şekilde dizilirse Timin (T) deriz. Başka bir şekilde dizilime Guanin (G), bir diğerine ise Sitozin (C, İng: Cytosine) deriz. Ancak biz onlara ne dersek diyelim, aslında bunlar sadece sıradan birer baz grubudur. Birer kimyasaldır. Ancak bu kimyasallar, bizim genetik yapımıza sahiptirler.

Aşağıda, bu kodlayıcı “harflerin” ya da kimyasal moleküllerin yapısını görebilirsiniz. Görebileceğiniz üzere sadece sıradan atomların farklı dizilimleri sonucu bu moleküller oluşmaktadır:

Ne kadar da birbirlerine benziyorlar değil mi? Tek değişen, atomlarının dizilimi. Ancak bu dizilimlerin farklı farklı olması, bu moleküllerin farklı kısımlarının aktif hale gelmesine ve farklı moleküllerle, farklı tepkimelere girebilmelerine sebep oluyor. bu farklı tepkimelerin toplamı da, bir varlığı "canlı" ya da "cansız" kılıyor. İşte fark burada! Ve anlaşılması gereken nokta da bu!

Devam edelim. Nükleotitler, taşıdıkları bu bazlara göre isimlendirilirler. Peki bir nükleotitin yapısı nedir? Elbette ki, tıpkı evrendeki diğer tüm maddeler ve varlıklar gibi; atomlardan oluşan sıradan dizilimler. İşte bir nükleotit dizilimi:

Gördüğünüz gibi, nükleotit denen ve örneğin çocuğunuzun neye benzeyeceğine karar veren moleküller, son derece sıradan atom dizilimlerinden fazlası değil! Bir fosfat (phosphate) grubu, bir şeker (sugar) grubu ve bir baz (base) grubu! Daha fazlası yok.

Nükleotit dediğimiz molekül tipleri, sadece genetik materyalimiz ile sınırlı değil. Örneğin size bir diğer nükleotit örneği verelim: ADP. Yani Adenozin Difosfat. Bu da bir nükleotittir; ancak kimyasal evrim sırasındaki ardı arkası kesilmeyen seçilim sırasında, genetik materyali kodlayacak şekilde özelleşmemiştir. Yani cansızlıktan, canlılığı evrimleştirecek olan yapılar içerisinde görevi bu olmamıştır. Dolayısıyla günümüzde de bu yapı, herhangi bir genetik bilgi kodlamaz, enerji ile ilgili işlerde görev alır. Ancak yapısal olarak oldukça benzerlerdir:

Buradan anlaşılması gereken şudur: Canlılık, bir "cansızlık çorbası" içerisinde, kimyasalların farklı şekillerde birbirlerine bağlanması, kırılması, birleşmesi, ayrılması sonucunda, 600 milyon yıl süren bir deneme-yanılma ve seçilim süreci sonucunda oluşmuştur. Bu süre zarfında pek çok çeşit "canlı-benzeri bileşim" oluşmuş olabilir. Üstelik her oluşan organik yapı, canlılığa katılmamıştır da. Bazıları yapılarından ötürü canlılığın dışarısında kalmış, bazıları kısmen kullanılmıştır. Bu yapılardan bazıları canlılığın evrimi için uyumlu olmalarından ötürü seçilmiştir. İşte günümüzdeki her canlının atası olan canlıların (koaservatların) yapısındaki kimyasallar, günümüzdeki her canlının hücrelerindeki kimyasal özellikleri kısmen ya da tamamen temsil etmektedir. Eğer onlar farklı şekilde hayatta kalabilseydi, günümüz canlı formlarının hücreleri de farklı yapıda olabilecekti. Bunlara gelecek yazılarımızda zaten döneceğiz.

Bir diğer görselle devam edelim. Nükleotitlerin kimyasal yapılarının basit çizimle gösterimi şu şekildedir:

İşte nükleotitler, kimyasal özelliklerinden dolayı bağ kurmak zorunda oldukları diğer nükleotitler ile birleşirler ve bu birleşimin tümü, DNA'yı oluşturur. DNA sarmal (heliks) yapısının, bu nükleotitlerin de gösterilerek çizilen hali şu şekildedir:
 
DNA, birçok farklı proteinle birlikte ökaryotlarda, yani çekirdeği ile zarlı organelleri bulunan canlılarda, çekirdeğin içerisinde yer almaktadır. Normalde bu yapının karmakarışık bir biçimde bulunduğu yağıya “kromatin ipliği” ya da “kromatin ağı” denir. Bunu da görelim:

Yukarıdaki görsel son derece faydalıdır. En solda görülen spagetti tabağına benzeyen yapı, elbette ki bir tabak değildir, içindeki sarı yapı da spagetti değildir. Bu sarı yapı, upuzun olan bir DNA ağıdır. Burada, bütün uzunluğuyla, DNA molekülü bulunmaktadır. Karmakarışık bir ağ şeklinde. Mor renkli kap da, hücre çekirdeğidir. Burada gösterilmemiş olsa da, hücre çekirdeği de, hücre sıvısının içerisinde bulunur.

Çıkarılan mavi oku takip ederseniz, DNA Heliks yapısına kadar geçişi görebilirsiniz. Aslında, bu karmaşık ağın içerisinde belirli bir düzen vardır. Bu düzen çok önemlidir, çünkü hücre bölünmesi sırasında genetik bilginin aktarımında bu özel birimler görev alırlar. Bu özel birimlerin adı “kromozom”dur. Kromozomlar, DNA’nın histon proteinleri tarafından sarılarak yoğunlaşması sonucu oluşan genetik birimlerdir. Kromozomlar da şu şekilde görülürler:

Bu görsel de son derece açıklayıcıdır. Görebileceğiniz üzere hücre çekirdeğinin içerisinde özelleşmiş olarak bulunan bu DNA yapıları, kromozomlardır. Kromozomlardan yola çıkarak bazlara kadar yapılan açılımı, yukarıdaki görseli takip ederek bulabilirsiniz.

Her canlıda, Evrimsel süreçleri sırasında edinilmiş farklı sayıda kromozom bulunmaktadır. Kromozomlar en büyük DNA gruplarıdır. Kromozomların toplamında bulunan, bir canlının tüm genetik bilgisine genom adı verilmektedir.

Kısaca nükleotitlerin depolanması işlemi içerisindeki farklı genetik birimlere, farklı isimler verilmektedir. Bunlar, şimdilik bizim için çok da önem arz etmiyor; ancak Biyoloji'yi anlamak için elbette kritik öneme sahiptirler.

Peki, genler bu adım adım karmaşıklaşan yapının neresindedirler?
Genler, nükleotit dizilimlerinin (bilgisayar veya dil benzetimi dahilinde "harflerin") anlam kazandığı bölgelerdir. Burada anlam kazanmaktan kasıt, yine bilim-dışı ya da doğaüstü bir "anlam" değildir. Canlıların, "canlılık özelliklerini" sürdürebilmeleri için üretmek zorunda oldukları çeşitli kimyasallar vardır ve genler, bu kimyasalların salgılanma sırasını, biçimini, vb. özelliklerini etkiler ve bu bilgileri depolar. İşte protein sentezi yapan bu anlamlı nükleotit gruplarına gen demekteyiz. Genlerin de her bölgesi protein sentezine katılmak zorunda değildir. Gen dizilimlerinin içerisinde ekson olarak bilinen kısımlar protein yapısına katılırken, intron denen kısımlar kesilerek atılırlar. Bu ikinci kısımların her zaman işlevleri olmak zorunda değildir. Kimi zaman tamamen işlevsiz ("hurda DNA") olarak bulunurken, kimi zaman eksonların protein sentezine katılmalarını düzenleyen bir görev alırlar.
 
Görebileceğiniz üzere genler, DNA sarmalının belirli kısımlarıdır. Bu kısımlar, anlamlı ifadeler halindedirler ve hücre tarafından gerektiğinde algılanır ve kullanılırlar.

Bilgisayar benzetimimize dönecek olursak, bilgisayarların da 1′ler ve 0′lar ile “konuştuğunu” söylemiştik. Ancak bu 1′ler ve 0′lar tek başlarına hiçbir anlam ifade etmezler. Hatta çoğu zaman, bunların uzun dizilimleri de anlam ifade etmeyebilir. Ancak bunların belirli uzunluktaki dizilimleri, anlamlı bir hal alırlar. Örnek verecek olursak, bir bilgisayar için 11101010gibi bir dizilim anlam ifade etmeyebilir. Ancak aynı dizilimi içerisinde barındıran fakat biraz daha uzun bir hali,101001101110101000011101 dizilimi, anlamlı olabilecektir, örneğin bu bilgi, klavyeden gelen bir komut sonucu ekranda “A” harfinin çıkmasını sağlayabilir. Bunu bilgisayalarda, 8-bitlik sistem (az önceki uzun sayıların her bir basamağı 1 bittir, dolayısıyla o kod 24 bitlik bir dizilime sahiptir), 16-bitlik sistem, 24-bitlik sistem, 32-bitlik sistem, 64-bitlik sistem, vs. şeklinde isimlendiririz. Yani anlam bütünleri, bilgisayarlar içerisinde 8'er, 16'şar, 24'er, 32'şer ya da 64'er kümeler halinde okunmaktadır. İşte bu yüzden 32 bitlik okuma sistemine sahip bir bilgisayara, 64 bitlik bir sistemle yazılmış bir programı yüklemeye çalışırsanız hata verecektir. Çünkü okuma ile yazma birbirine uymayacaktır (sadece Fransızca bilen birine Rusça derdinizi anlatmak gibi düşünebilirsiniz).


Dolayısıyla bilgisayarlar ve yazılımlar, önceden belirlenen uluslararası protokollere uygun olarak üretilirler. Bu sayede ABD'den alacağınız bir bilgisayar, Çin'de yazılmış bir programı -eğer protokol bazında uyumlularsa- rahatlıkla okuyacaktır. Doğada bu evrensel protokolleri sağlayan şey, doğa yasalarıdır. Elbette doğa bilinçli bir yapıda değildir; ancak evrenimizin oluşum türünden ötürü genel geçer olarak etkili bazı doğa yasaları oluşmuştur. Bu yasalar dahilinde çalışan tüm kimyasallar, bu yasaların koyduğu dili kullanarak evrimleşmektedirler. Fiziksel, kimyasal ya da biyolojik olabilen bu evrim, bu süreçler sonucunda oluşan her yapının birbiriyle belli bir ilişki içerisinde olmasını ve belli sınırlarda uyumlu olmasını sağlamaktadır. Bunun en güzel ispatı, fiziksel evrim sonucu oluşan yıldızlar ve sistemlerin içerisinde, kimyasal evrim sonucunda oluşan canlılığın içerisinde, biyolojik evrim sonucunda oluşan varlıkların birbirleriyle ve evrenle fiziksel, kimyasal ve biyolojik olarak ilişkili olmalarıdır. Yani evrenin yapısal protokollerini doğa yasaları koymaktadır ve bu yasalar sonucunda evrimleşen yapılar, birbirleriyle belli sınırlar dahilinde uyumlu olabilmektedirler.

Bu protokoller dahilinde anlamlı gen bütünlerine baktığımızda, nükleotitler için de aynı durumun geçerli olduğunu görürüz. Ancak saydıklarımızın aksine, bildiğimiz bütün canlılarda, istisnasız olarak 3-bitlik okuma sistemi bulunmaktadır (bilgisayarlardaki gibi 8 bit, 16 bit, 32 bit gibi farklı tipleri yoktur). Örneğin, tek başına AT şeklindekli bir kodun hiçbir anlamı yoktur. Ancak kod,ATG olduğunda bir anlam ifade edebilmektedir. Bu "anlam", "ATG" diziliminin karşılık geldiği bir aminoasidin üretilmesidir (tıpkı bilgisayarlarda, klavyeden gelen bilginin ekrana aktarılması gibi). Ancak yine de, üretilen bu tek aminoasidin hiçbir işlevi olmayabilir (benzer şekilde, 8-bit okuyan bilgisayarın yapabildiği iki işlemin teker teker bir anlam ifade etmeyip, ikisi bir arada olduğunda bir anlam ifade etmesi gibi). Benzer şekilde, ATGTTC şeklindeki bir dizilim de iki aminoasit üretmekle birlikte ("ATG" ve "TTC" kodlarına karşılık gelenler) halen anlamsız olabilir. Ancak ne zaman ki ATGTTCGTAACGTAC gibi bir dizilime ulaşılır, o zaman bu kodun ürettiği aminoasitlerin birleşiminden oluşan protein, belirli bir işleve sahip olabilir ve bu “kelime”, hücre için “bölünmeye başla” komutu anlamına gelebilecektir. Elbette bu kodları şu anda açıklamak amacıyla uydurmaktayız, ancak temel olarak konunun özünü vereceğini düşünüyoruz.

Dediğimiz gibi canlılar genetiğinde istisnasız her canlıda "3-bitlik sistem" vardır (ve bu da ortak bir atadan geldiğimize işaret eder) ve her 3 nükleotit (örneğin GCA) bir aminoasidi kodlar. Bu 3'lü kod sonucunda bir aminoasit üretilir ve bunların birleşimi proteinleri, bunlar enzimleri, enzimler de bizi "canlı" yapan reaksiyonları üretirler veya üretilmesini sağlarlar. Tek bir aminosit, yukarıda izah ettiğimiz gibi tek başına belli bir anlam taşımayabilir. Ancak aminoasitlerin farklı bileşimleri sayesinde, pek çok işi yapan, sonsuz sayıda protein üretilebilir. İşte bu işi sağlayan, genetik açıdan anlamlı ifadelere de “gen” diyoruz.

Genler, sizin boyunuzdan saç renginize, vücudunuzun kıllılığından göz renginize, vücudunuzdaki organların bulunmaları gereken yerlerden kalıtsal olarak taşıyacağınız hastalıklara kadar birçok farklı fiziksel özelliği kodlamaktadırlar. Bu kodlar, anlattığımız gibi A, T, C ve G harflerinin belirli dizilimleriyle saklanırlar. Bu dizilimlerin "nasıl" olacakları ise, milyarlarca yıldır süren evrimle belirlenmekte ve değişmektedir. Yani canlılık, bir başlangıçtan başladıktan sonra, farklı yönlere doğru bizim Evrim Ağacı olarak isimlendirdiğimiz yapıda türleşirken, her canlının barındırdığı genetik dizilim, çevre şartlarının etkisi altında adım adım değişmiştir. Bu değişimler, hücreler içerisinde salgılanan kimyasalların yapısında, miktarında ve çeşidinde farklılıklara sebep olmuştur. Bu farklılıklar da, hücrelerin kendilerinin farklı özellikler edinmesine sebep olmaktadır. İşte bu farklı özelliklere sahip olanlar arasında, çevreye en uygun olanlar varlıklarını sürdürmeye devam edebilirler; böylece kendilerine bu farklı özellikleri veren genleri ürerken yavrularına aktarabilirler. İşte bu şekilde, adım adım bir genetik birikimle türler farklılaşır ve değişirler. Ki biz de buna Evrim diyoruz.

Umuyoruz bu kısma kadar genetikle ilgili temel bilgileri verebilmişizdir. Şimdi, bu karmaşık görünen genetik yapıların, tamamen doğal süreçlerle nasıl var olabileceklerine göz atıp bu yazımızı bitirelim:
 
Nükleotitler, RNA ve DNA Kendiliğinden Nasıl Oluşur?


Burada pek fazla değinmemiş olsak da, esasında canlılığın genetik materyalinin temelini muhtemelen RNA oluşturmaktadır. Burada değinmiyor olmamızın sebebi ise, yaşamın başlangıcına daha detaylı gireceğimiz sonraki yazılarımızda zaten bu yapıları daha detaylı açıklayacak olmamızdır.


Bu yapıların doğal süreçlerle nasıl oluştuğunu anlamak için, Dünya'nın ilkel koşullarını hatırlamak gerekmektedir. Günümüzdeki 14 derecelik ortalama sıcaklığın aksine, günümüzden 4.4 milyar yıl kadar önce Dünya'nın ortalama sıcaklığı 80 derece dolaylarındaydı. Atmosferde doğal süreçlerle, mor ötesi ışınların etkisi altında katalizlenen ve hızlı bir şekilde oluşan hidrojen siyanit, üre, formaldehit, siyanoasetilen ve formamit gibi kimyasallar, ilk yağmurlarla birlikte yeryüzüne düşmekte ve dolayısıyla yeni oluşan okyanuslar içerisinde birikmekteydi. Bunun haricinde atmosferde oluşan sülfürik asit ve hidroklorik asit de Dünya'ya yağan zehirli kimyasallar arasındaydı. Günümüz canlılığı için bu kimyasallar zehirli olsalar da, ilkin Dünya koşullarında oluşacak kimyasallar için önemli yapıtaşları olarak karşımıza çıkmaktadırlar. Örneğin canlılığın temelinde görev alacak olan sodyum klorür veya kalsiyum karbonat gibi kimyasallar, bu zehirli kimyasalların yüzeyde bulunan metallerle tepkimeye girmesi sonucunda oluşmuşturlar.


İşte bu ilkel koşulları araştıran ve nükleotitlerin doğal süreçlerle nasıl var olduğunu aydınlatmaya çalışan bilim insanlarından olan Joan Oro, 1961 yılında yaptığı deneylerle 150 derecelik bir sıcaklıkta 1 saatten az bir sürede, sadece doğal yollarla oluşmuş hidrojen siyanit ve amonyak kullanarak adenin ve guanini üretmeyi başardı. Hatta burada detayına inmediğimiz ve canlılığın yapısında görülmeyen bazı diğer nükleotitleri de doğal süreçlerle yaratmayı başardı (unutmayınız ki bir kimyasal grubunun her formu canlılık içerisinde bulunmak zorunda değildir).
Daha sonradan 1966 yılında yapılan deneylerde aynı sıcaklıkta siyanoasetilen ve üre kullanılarak sitozin ve urasil de üretilebilmiştir. Yine, bu deneylerde de, sadece doğal ve ilkel Dünya koşulları taklit edilmiştir. Hatta 21. yüzyılda yapılan yeni deneylerle, sadece formamid kullanılarak 2 gün içerisinde tüm nükleotitleri üretmek mümkün olmuştur. Doğal ortamda bulunan ve önceki araştırmalarda kullanılmayan borat kimyasalının bu konuda çok etkili bir katalizör olduğunu Raffaele Saladino ve arkadaşları keşfetmiştir.

Daha sonradan bu ekiplerin yaptıkları çalışmalarla, sadece doğal kimyasal tepkimeler taklit edilerek RNA'nın bile üretilmesi mümkün olmuştur. RNA üretiminde gerekli olan unsurların mor ötesi ışınlar ile hidroksibakır fosfat olduğu tespit edilmiştir. Kısaca, yapılan deneylerde nükleotitler ve genetik materyale dair gereken tüm bileşenler üretilebilmiştir. Bu da, doğada bunların kendiliğinden var olmaması için tek bir nedenin dahi bulunmadığını bizlere göstermektedir.
Kaynaklar ve İleri Okuma:



  1. Biogenesis, abiogenesis, biopoesis and all that, Carl Sagan, Origins of Life and Evolution of Biospheres, Volume 6, Number 4 (1975), 577, DOI: 10.1007/BF00928906
  2. Conversion of light energy into chemical one in abiogenesis as a precondition of the origin of life, T.E. Pavloyskaya, T.A. Telegina, Origins of Life and Evolution of Biospheres, Volume 19, Numbers 3-5 (1989), 227-28, DOI: 10.1007/BF02388822
  3. Abiogenesis and photostimulated heterogeneous reactions in the interstellar medium and on primitive earth: Relevance to the genesis of life,A.V. Emeline et al., Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Volume 3, Issue 3, 31 January 2003, Pages 203–224
  4. The possibility of nucleotide abiogenic synthesis in conditions of “KOSMOS-2044” satellite space flight,E.A. Kuzicheva, Advances in Space Research, Volume 23, Issue 2, 1999, Pages 393–396
  5. The emergence of the non-cellular phase of life on the fine-grained clayish particles of the early Earth's regolith, Mark D. Nussinov, et al., Biosystems, Volume 42, Issues 2–3, 1997, Pages 111–118
  6. Models for protocellular photophosphorylation, Peter R. Bahn, et al., Biosystems, Volume 14, Issue 1, 1981, Pages 3–14
  7. Evolution and self-assembly of protocells,Richard V. Sole, The International Journal of Biochemistry & Cell Biology, Volume 41, Issue 2, February 2009, Pages 274–284
  8. Sufficient conditions for emergent synchronization in protocellmodels, Journal of Theoretical Biology, Volume 254, Issue 4, 21 October 2008, Pages 741–751
  9. The emergence of ribozymes synthesizing membrane components in RNA-based protocells,Wentao Ma, et al., Biosystems, Volume 99, Issue 3, March 2010, Pages 201–209
  10. The “protocell”: A mathematical model of self-maintenance,Helmut Schwegler, et al., Biosystems, Volume 19, Issue 4, 1986, Pages 307–315
  11. Computational studies on conditions of the emergence of autopoietic protocells,Naoaki Ono, Biosystems, Volume 81, Issue 3, September 2005, Pages 223–233
  12. Bifurcation for a free boundary problem modeling a protocell,Hua Zhang, et al., Nonlinear Analysis: Theory, Methods & Applications, Volume 70, Issue 7, 1 April 2009, Pages 2779–2795
  13. Protocell self-reproduction in a spatially extended metabolism–vesicle system,Javier Macia, et al., Journal of Theoretical Biology, Volume 245, Issue 3, 7 April 2007, Pages 400–410
  14. A nonlinear treatment of the protocell model by a boundary layer approximation,Kazuaki Tarumi, et al., Bulletin of Mathematical Biology, Volume 49, Issue 3, 1987, Pages 307–320
  15. A model for the origin of stable protocells in a primitive alkaline ocean,W.D. Snyder, et al., Biosystems, Volume 7, Issue 2, October 1975, Pages 222–229
  16. Facilitated diffusion of amino acids across bimolecular lipid membranes as a model for selective accumulation of amino acids in a primordial protocell,William Stillwell, Biosystems, Volume 8, Issue 3, December 1976, Pages 111–117
  17. The origins of behavior in macromolecules and protocells,Sidney W. Fox, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, Volume 67, Issue 3, 1980, Pages 423–436
  18. Self-organization of the protocell was a forward process,Sidney W. Fox, Journal of Theoretical Biology, Volume 101, Issue 2, 21 March 1983, Pages 321–323
  19. From prebiotic chemistry to cellular metabolism—Thechemicalevolution of metabolism before Darwinian natural selection,Enrique Melendez-Hevia, et al., Journal of Theoretical Biology, Volume 252, Issue 3, 7 June 2008, Pages 505–519
  20. Natural selection in chemical evolution,Chrisantha Fernando, et al., Journal of Theoretical Biology, Volume 247, Issue 1, 7 July 2007, Pages 152–167
  21. Chemical evolution of amino acid induced by soft X-ray with synchrotron radiation,F. Kaneko, et al., Journal of Electron Spectroscopy and Related Phenomena, Volumes 144–147, June 2005, Pages 291–294
  22. Radiation-induced chemicalevolution of biomolecules,Kazumichi Nakagawa, Radiation Physics and Chemistry, Volume 78, Issue 12, December 2009, Pages 1198–1201
  23. Evolution of DNA and RNA as catalysts for chemical reactions,Andres Jaschke, et al., Current Opinion in Chemical Biology, Volume 4, Issue 3, 1 June 2000, Pages 257–262
  24. Anatomical correlates for category-specific naming of living andnon-living things,Carlo Giussani, et al., NeuroImage, Volume 56, Issue 1, 1 May 2011, Pages 323–329
  25. Formamide in non-life/lifetransition,Raffaele Saladino, et al., Physics of Life Reviews, Volume 9, Issue 1, March 2012, Pages 121–123
  26. Major life-history transitions by deterministic directional natural selection,Lars Witting, Journal of Theoretical Biology, Volume 225, Issue 3, 7 December 2003, Pages 389–406
  27. From the primordial soup to the latest universal common ancestor,Mario Vaneechoutte, et al., Research in Microbiology, Volume 160, Issue 7, September 2009, Pages 437–440
  28. How life evolved: Forget the primordial soup,Nick Lane, The New Scientist, Volume 204, Issue 2730, 14 October 2009, Pages 38–42
  29. Modelling the early events of primordial life, Yu. N. Zhuravlev, et al., Ecological Modelling, Volume 212, Issues 3–4, 10 April 2008, Pages 536–544
  30. From a soup or a seed? Pyritic metabolic complexes in the origin of life, Matthew R. Edwards, Trends in Ecology & Evolution, Volume 13, Issue 5, May 1998, Pages 178–181
  31. Self-organization vs. self-ordering events in life-origin models,David L. Abel, Physics of Life Reviews, Volume 3, Issue 4, December 2006, Pages 211–228
  32. The steroid receptor RNA activator is the first functional RNA encoding a protein,S. Chooniedass-Kothari, et al., FEBS Letters, Volume 566, Issues 1–3, 21 May 2004, Pages 43–47
  33. RNA, the first macromolecular catalyst: the ribosome is a ribozyme,Thomas A. Steitz, et al., Trends in Ecology & Evolution, Volume 28, Issue 8, August 2003, Pages 411–418
  34. Did the first virus self-assemble from self-replicating prion proteins and RNA?,Omar Lupi, Medical Hypotheses, Volume 69, Issue 4, 2007, Pages 724–730
  35. Characters of very ancient proteins,Bin Guang-Ma, et al., Biochemical and Biophysical Research Communications, Volume 366, Issue 3, 15 February 2008, Pages 607–611
  36. Simple coacervate of pullulan formed by the addition of poly(ethylene oxide) in an aqueous solution,Hiroyuki Ohno, et al., Polymer, Volume 32, Issue 16, 1991, Pages 3062–3066
  37. Preparation of polyacrylamide derivatives showing thermo-reversible coacervate formation and their potential application to two-phase separation processes,Hiroaki Miyazaki, et al., Polymer, Volume 37, Issue 4, 1996, Pages 681–685
  38. Coacervate complex formation between cationic polyacrylamide and anionic sulfonated kraft lignin,Alois Vanerek, et al., Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 273, Issues 1–3, 1 February 2006, Pages 55–62
  39. Complex coacervates as a foundation for synthetic underwater adhesives,Russell J. Stewart, et al., Advances in Colloid and Interface Science, Volume 167, Issues 1–2, 14 September 2011, Pages 85–93
 
Abiyogenez - 4: İlk DNA Nasıl Oluştu? - Retrovirüsler, 'Önce-RNA Hipotezi' ve 'RNA Dünyası Kuramı'


Bu yazımıza kadar sizlere canlılık ile cansızlık arasında herhangi bir fark olmadığından, canlılığı ayırt etmekte kullandığımız yöntemlerden olan "Hayat Molekülleri"nin nasıl oluşmuş olabileceğinden, yapılarından ve işlevlerinden bahsettik. Bu yazımızda ise, artık yavaş yavaş bu moleküllerin canlılığın evrimine nasıl katkı sağladığına değinerek ilerlemek istiyoruz. Çünkü önceki yazılarımız ağırlıklı olarak kafalardaki yanlış anlaşılma ve betimlemeleri silmeyi hedeflemekteydi. Bu yazımızdan itibaren, canlılığın cansızlıktan evrimine daha detaylı bir bakış atacağız.



Başlamadan uyarmakta fayda var: Elbette burada anlattıklarımız tüm detayları kesin olarak bilinen olgular değildir. Çünkü kimse 4.5 milyar yıl önce Dünya'nın başlangıcında bulunmadı ve muhtemelen asla da bulunamayacak. Dolayısıyla orada tam olarak ne olduğunu bilemiyoruz. Fakat günümüzdeki fizik ve kimya yasalarının o zamanda da geçerli olduğunu bildiğimizden, günümüzdeki unsurlardan, olaylardan ve olgulardan yola çıkarak, geçmişte neler olduğunu aydınlatabiliyoruz. Bugünkü bilgilerimiz dahilinde bile canlılığa ait tüm unsurların doğal süreçlerle var olabileceklerini artık biliyoruz. Bunların teknik detaylarıyla ilgili bazı soru işaretleri elbette bulunuyor ve tartışılıyor. Tüm bilim insanları tek bir fikre varmış da değiller. Ancak elde bulunan ve giderek artan gerçekler, birçok öngörümüzün doğru olduğunu ve canlılığın başlangıcının tamamen doğal süreçlerle meydana geldiğini gösterir nitelikte. Doğayla ilgili bilgilerimiz arttıkça da bu öngörü daha da doğrulanacak gibi gözüküyor. En azından şimdiye kadar bilimin hiçbir dalında doğaüstü açıklamalara ihtiyaç duyulmamış olması ve her sorgulanan unsurun tamamen doğal, bilinçsiz ve yönlendirilmemiş şekilde var olabileceğini keşfi, bize bu düşüncemizde haklı olduğumuz fikrini veriyor. Henüz süreçleri çözülememiş birçok farklı mekanizma olsa da, çözebildiklerimizin verdiği kritik bilgiler, daha genel yargılarımızın da doğru olmasının çok muhtemel olduğunu gösteriyor. En nihayetinde gerçekler, yine bilimsel araştırmalarla keşfedilecektir. Bekleyip sonuçları göreceğiz.



Her şeyden önce söylemek gerekiyor ki hangi molekülün nasıl ve hangi sırada oluştuğu konusu, uzun süre bilim insanlarının aklını meşgul etmiş ve pek çok hipotezin ortaya atılmasına, onlarca deneyin düzenlenmesine, konu hakkında pek çok tez yazılmasına sebep olmuştur. Bir grup bilim insanı öncelikle metabolizmayı, daha doğrusu organizasyon içerisinde sürdürülecek aktivitelerin toplamını oluşturacak olan karbonhidrat, yağ ve proteinlerin önce; genetik materyalin ise bunların oluşumuna bağlı olarak sonradan oluşması gerektiğini ileri sürmüşlerdir. Buna bilim dünyasında Önce-Metabolizma Hipotezi denmektedir. Bir diğer grup bilim insanı ise, öncelikle genetik materyalin oluşması gerektiğini, sonrasında ise bu oluşuma bağlı olarak organizasyon içi aktivitenin oluşması gerektiğini ileri sürmüşlerdir. Ancak bu hipotez, uzun bir süre çıkmaza girmiş ve dolayısıyla Önce-Metabolizma Hipotezi hep ağırlık kazanmıştır. İkinci hipotezin girdiği çıkmaz şudur: Önce DNA mı oluştu, yoksa RNA mı? Önce DNA oluştuysa bu karmaşık yapı bir seferde nasıl oluştu? RNA, DNA'dan daha basit yapılı olmasına rağmen, neden DNA'dan sonra oluştu? RNA önce oluştuysa, nasıl oldu da RNA'dan DNA oluşabildi? Bu sorular dönüp dururken Byioloji'de yazı içerisinde tekrar döneceğimiz Merkezi Dogma denen bir ilkenin geçerliliği olduğu düşünülmekteydi. Buna bağlı olarak bir grup bilim insanı önce DNA'nın oluşması gerektiğini iddia ederek Önce-DNA Hipotezi'ni ileri sürdüler. Bir diğer grup bilim insanı ise buna karşı gelerek, öncelikle RNA'nın var olması gerektiğini, ondan sonra DNA'nın var olabileceğini iddia ederek merkezi dogma ilkesine karşı geldiler ve Önce-RNA Hipotezi'ni ileri sürdüler. Günümüzdeki yeni bulguların ışığında bu üç taraflı tartışma (Önce-Metabolizma, Önce-DNA, Önce-RNA) belli bir düzeyde dinerek, ortak bir noktada buluşulmaya başlandı. Biz, bu ortak nokta üzerinden giderek başlığımızda yer alan sorulara cevaplar vereceğiz.



Öncelikle eldeki soruna bir daha bakalım: Canlılığı oluşturacak materyaller, belli bir sırayla ya da eş zamanlı olarak oluşmuş olmalıdır. Eğer bir sırayla oluştularsa, hangisi öncelikli olarak oluştu? Eğer eş zamanlı olarak oluştularsa, nasıl oldu da zamanlama bu kadar doğru ve isabetli bir şekilde tutturuldu? Bu sorular, bilim insanlarının aklını çokça kurcalamıştır. Ancak artık ne tamamen sırayla, ne de tamamen eş zamanlı bir oluşum üzerinde durulmaktadır. İkisi zamanlamanın da oluşuma belirli oranlarda katkı sağladığı düşünülmektedir.



Metabolizmanın mı önce, DNA veya RNA'nın, yani kalıtım ve düzenleyici materyallerin mi önce oluştuğu sorusu halen tartışılmakta olan bir sorudur. İşte bu noktada, muhtemelen bir eş zamanlılık durumu ile karşı karşıyayız. Daha sonra değineceğimiz gibi canlılık, cansızlık ortamındaki karmakarışık bir ortamda evrimleşmiştir. Dolayısıyla bu ortamda metabolik malzeme ile kalıtımsal malzemenin bir arada bulunuyor olma ihtimali son derece yüksektir. Bu materyalleri bir arada bulundurabilen bireylerin, tek tek bulunduranlara göre avantajlı olması beklenecektir. Bu konuya, ilerideki yazılarımızda daha da ayrıntılı olarak gireceğiz; ancak şimdilik metabolizma ile kalıtım materyalinin eş zamanlı veya en azından birbirine çok yakın zamanlarda oluştuğunu düşünebilirsiniz.



Peki, metabolizmanın oluşumunda bir sorun yok; zira karbonhidratlar ve yağlar, kendiliğinden, çevresel etmenlerin etkisi altında kolayca oluşabilen ve oluşabildikleri gözlenebilen kimyasallardır. Nükleotitler de benzer şekilde kendiliğinden, uzun deneme-yanılma süreçleri sonucunda oluşabilir. Fakat nükleotitlerden oluşan büyük yapılardan DNA mı, yoksa RNA mı önce oluşmuştur? RNA tarafından üretilen proteinler, nükleotitlerin oluşturduğu DNA ve RNA'dan bağımsız olarak oluşmuşlar mıdır? Yoksa öncelikle kalıtım materyalleri oluşmuş, sonrasında ilkin proteinler mi üretilmiştir? İşte bu sorulara cevap verilmesi gerekmektedir.



Oluşum sırasını anlayabilmek için öncelikle yukarıda değindiğimiz bir diğer konuya tekrar dönelim: Bir grup bilim adamı, DNA olmaksızın RNA'nın sentezlenemeyeceğini, dolayısıyla proteinlerin üretilemeyeceğini, dolayısıyla canlının varlığını sürdüremeyeceğini ileri sürmüştür. Bu, bilim dünyasının Biyoloji'nin Merkezi Dogması olarak isimlendirdiği bir "ilke"dir. Bu ilkeye göre DNA, RNA'yı sentezler; RNA da proteinleri sentezler. Hiçbir zaman proteinlerden RNA, RNA'dan da DNA üretilemez. Dolayısıyla, bu ilkeye göre canlılığın başlangıcında ilk önce oluşması gereken, DNA'dır. Buna, daha önce de belirttiğimiz gibi, "Önce-DNA Hipotezi" denmiş ve uzunca bir süre DNA'nın nasıl oluşabileceği üzerine araştırmalar yürütülmüştür. Bu araştırmaların temelinde öncelikle DNA'nın, sonrasında RNA ve proteinlerin üretildiğini fikri yatmaktadır. Fakat Önce-DNA Hipotezi birçok soru işaretini açıkta bırakıp, birçok yeni soru işareti yarattığı için hiçbir zaman güçlü bir açıklama haline gelememiştir.



Ancak daha sonra, retrovirüs dediğimiz ve ana genetik materyali canlılar gibi DNA değil de RNA olan virüslerin yapısı anlaşıldığında, "Önce-DNA Hipotezi" çok derin yaralar alarak iyice terk edilmeye başlanmışıtır. Retrovirüslerde keşfedilen yeni bir mekanizma sayesinde günümüzde artık Biyoloji'de "merkezi dogma" geçerliliğini kısmen yitirmiştir.



Önce-DNA Hipotezi'ne göre, DNA tam olarak açıklanamayan ancak temel kimyasal tepkimeler dahilinde, doğal fiziksel itki-tepki kuvvetlerine göre, bu şekilde sarmal bir halde üretilmiş ve sonrasında, yine yapısı gereği RNA sentezleyerek işlevini sürdürmüştür. Ancak bu hipotezin, pek çok açığı bulunmaktadır. Bunların en önemlisi de, DNA'nın bir katalizör yani kimyasal tepkimelerin aktivasyon enerjisinin düşürücü (tepkimeyi hızlandırıcı) etkiye sahip kimyasal özelliği bulunmamasıdır. Bu da, bu kadar kompleks ve büyük moleküllerin oluşabilme ihtimalini çok düşürmektedir. Çünkü, katalizör olan bir ortamda birkaç saniyede gerçekleşecek bir tepkime, katalizör olmadığında günler, haftalar, yıllar ve hatta yüzlerce, binlerce yıl alabilmektedir. Önce-DNA Hipotezi savunucuları, ilk canlının oluştuğu ortam koşullarını katalize edici bir faktör olarak ileri sürseler ve bu şekilde bu karşı-tezi çürütmeye çalışsalar da, yaptıkları açıklamalar bilimsel açıdan pek de tatmin edici değildir. Dahası, bu açıklamadan çok daha iyi ve az varsayıma dayanan bir diğer açıklama bulunmaktadır. Buna az sonra geleceğiz.



Sonradan yapılan yeni bir keşif, zaten neredeyse tüm soru işaretlerini ortadan kaldırmaya yetmiştir: Ribozim (ribozyme) isimli bir RNA parçası ve aynı zamanda da enzim keşfedilmiştir.

Ribozim, "ribonükleik asit enzimi"nin kısaltılmışıdır. Ribozim, aslında temel olarak bir RNA molekülüdür. Bu molekülün üçüncül (tetriary) yapısı (daha fazla bilgi için proteinlerin yapısal özelliklerine bakmanızı tavsiye ederiz) sayesinde, kalıtım materyali haricinde, aynı zamanda bir enzim olarak çalışmakta ve kimyasal tepkimelerin aktivasyon enerjisini düşürebilmektedir. Ribozim kimyasal yapısından ötürü, ortamda kendisini oluşturacak ve yazı dizimizin önceki yazılarında bahsettiğimiz temel Hayat Molekülleri'nden olan nükleotitler bulunduğu sürece, kendi kendisini üretme tepkimesini tetikleyecek bir yapıdadır. Bu tip yapılara (ribozim tek değildir), bilim dünyasında oto-katalizör denmektedir.

Dolayısıyla canlılığın başlangıcında, aktivasyon enerjisi düşürülmemiş; ancak çevre etkisi altında normalden daha kolay gerçekleşebilen bir kimyasal tepkime sonucunda, tek bir ribozim bile üretilirse (ki ribozimin yapısı DNA'dan son derece basittir), sonrasında bu ribozimin kendisinin üretimini sağlayan tepkimeyi hızlandıran özelliği sayesinde sınırsız sayıda ribozimin oluşması sadece dakikalar ve günler alacaktır. Dolayısıyla Önce-RNA Hipotezi dahilinde, ilk oluşan molekül bir ribozimdir (bir tip RNA'dır) ve bu enzim doğal süreçlerle milyonlarca yıllık bir deneme-yanılma ve seçilim süreci sonucunda oluşmuştur, sonrasında kendisini üreterek hızla çoğalmıştır. Bu basit RNA, ilkin canlılarda genetik ve düzenleyici materyal rolünü görmeye başlamış, böylece koaservat içerisindeki kimyasal bütün tepkimeleri koordine edecek olan molekül oluşmaya başlamıştır. Sonrasında bu enzim-RNA yapısı, kimyasal evrim süreci içerisinde bildiğimiz RNA'ya daha da benzeyen bir hal almıştır ve buradan da geri-transkripsiyon denen ve "merkezi dogma"nın hatalı olduğunu gösteren tepkime sayesinde (retrovirüsleri hatırlayınız) RNA'dan DNA üretilebilmiştir.
 
Şimdi, bu kavramı daha iyi anlamak amacıyla, Biyoloji'deki merkezi dogma denen yapıyı özetleyecek olursak:



1) DNA, kendisini ve RNA'yı üretebilen moleküldür.

2) RNA, DNA'yı üretemez ancak proteinleri sentezleyebilir.

3) Proteinler, ne RNA'yı ne de DNA'yı sentezleyebilir. Sadece bunlar tarafından sentezlenirler.



Daha önce de bahsettiğimiz gibi retrovirüslerin keşfi, bu dogmanın ikinci maddesinin ihlal edilebildiğini, dolayısıyla ilkenin geçersiz olduğunu göstermiştir. Retrovirüsler, yapılarında var olan RNA'yı kullanarak DNA sentezlerler. Bunu yapan enzimse ters transkriptaz denen bir enzimdir. Biraz karmaşık olan ve temel Biyoloji bilgisi gerektiren bu olayı kabaca özetlemekte fayda görüyoruz. Bunu anlamak için, günümüzde bu işlemi halen gerçekleştirebilen varlıklar olan ve canlı sayılmayan retrovirüsler (4. sınıf virüsler) ve onlardaki RNA'dan DNA sentezini inceleyebiliriz:



1) Özel bir tRNA, RNA üzerinden çiftlenmenin başlaması için gereken öncül molekül olarak RNA'nın "birincil bağlanma bölgesi" denen kısmına bağlanır.



2) Sentezlenecek olan tamamlayıcı şeridin ilk parçaları, bu öncül molekülün bağlandığı birincil bağlanma bölgesinin hemen yanında bulunan R ve U5 denen bölgeye bağlanır ve bunların ikizleri, öncül molekülün peşinde üretilir.



3) RNAz H denen bir enzim, DNA'yı üretecek olan RNA'nın bu R ve U5 bölgelerini parçalar.



4) Bu işlem sonrasında, öncül molekül RNA'nın öteki ucuna geçer ve peşinden kopyalanmış R ve U5 parçalarını da sürükler. Bu parçalardan R isimli kısım, RNA'nın diğer ucundaki R ile bağ kurar.



5) Bu işlemden sonra RNA hızla kopyalanır ve tek bir şerit olan RNA'dan, ikincil ve kendisinin ikizi bir şerit elde edilir. Bu, aynı zamanda "eş DNA"nın (üretilecek olan DNA) ilk şeridi olur. Bu sırada RNAz H enzimi, ana RNA'nın büyük bir kısmını parçalar.



6) İlk şerit üretildikten sonra, otomatik olarak virüs içerisindeki RNA, ikinci şeridin oluşumunu tetikler.



7) İlk baştakine benzer bir sıçrama sonucunda, RNAz tarafından parçalanan RNA'nın yerine, ilk şeridi tamamlayan ikinci şerit üretilir. Böylece tek şeritli RNA'dan, çift sarmal olan DNA üretimi tamamlanır.



Bu olay, ilk bakışta karışık ve "moleküllerin kendi kendine yapamayacakları kadar karmaşık bir iş" gibi gözükse de, sorun "canlılık" kavramındaki hatalı tanımımızdan kaynaklanmaktadır. Şu nokta anlaşılırsa, sorun ortadan kalkar: "Canlı", bu yukarıda saydığımız gibi veya daha da karmaşık moleküler tepkimeleri gerçekleştirebilen varlıklar değillerdir. Tam tersine, bu yukarıda saydığımız gibi veya daha karmaşık moleküler tepkimelerin gerçekleştiği atomlar ve moleküller bütününe biz dönüp baktığımızda "canlı" diyoruz. Buradaki ufak farkı yakalayabildiğinizde, aklınızdaki pek çok sorun ortadan kalkacaktır.
Ancak sonuç olarak, RNA, bu yöntemlerle ve muhtemelen başlangıçta daha basit ve karmaşık olmayan; ancak daha çok hataya meyilli olan yöntemlerle DNA'yı üretebilmektedir. İşte bu da biziRNA Dünyası Kuramı'na götürür (bu artık bir hipotez olmayacak kadar farklı çeşitte bilimsel gerçeklerle desteklenmektedir). Bu kurama göre, daha önce bahsedildiği gibi, sadece 1 adet ribozim enzimi kimyasal ve fiziksel tepkimeler dahilinde doğal şartlar altında var olmuştur ve Doğal Seçilim sayesinde, bu yapı kendisinin üretimini sağladığı için seçilmiş ve varlığını sürdürmüştür. Bu sayede, kısa sürede Dünya'ya RNA molekülleri hakim olmaya başlamıştır. Hele ki yağ moleküllerinin su içerisinde kendi kendine organizasyon denen bir diğer ilke dahilinde, daha önce açıkladığımız basamaklardan geçerek bir zırh oluşturmaları ve RNA'ların bu zırh içerisine hapsolması, onları daha da avantajlı hale getirmiştir.



İşte koaservat dediğimiz ilk "canlı" yapıların genetik materyal kazanmaları da bu şekilde gerçekleşmiştir. Koaservatların oluşum ve gelişimlerine önümüzdeki yazılarda değineceğiz. Ribozim ve bunun sayesinde üretilen RNA molekülüne sahip olan koaservatlar, genetik materyalin düzenleyici rolünden ötürü çok daha avantajlı konuma geçmişlerdir ve herhangi bir genetik materyale sahip olmayanlara karşı üstünlük sağlamışlardır. Genetik materyal, bir hücre (ya da daha basit olarak koaservat) içerisindeki bütün tepkimelerin bilgisini depolayan yapıdır. Dolayısıyla genetik materyalin kazanılması, hücre içerisinde düzenli olarak gerçekleşecek tepkimelerin başlamasından daha önce olmuş olmalıdır. Daha sonra, genetik materyale vee bu sebeple de düzenli bir şekilde yaşamlarını sürdürüp çoğalmayı başarabilen bu koaservatlar gittikçe gelişerek tek hücreli canlıları meydana getirmişler ve bunların 3.8 milyar yıllık evrimleri sonucu da günümüzdeki modern canlılar meydana gelmiştir.



Önce-RNA Hipotezi (ya da günümüzdeki adıyla RNA Dünyası Kuramı), pek çok açıdan desteklenmektedir. Örneğin, canlılık Dünya'da, Dünya'nın var olmaya ve soğumaya başladığı 4.5 milyar yıl öncesinden yaklaşık 600-700 milyon yıl önce (bundan 3.8 milyar yıl kadar önce) var olmaya başlamıştır. Bu 600-700 milyon yıllık uzun süreçte, Dünya üzerinde sonsuz sayıda kimyasal tepkime gerçekleşmiştir. Miller-Urey Deneyleri ile ispatlandığı ve 460'tan fazla, farklı üniversitede de günümüzde sınandığı, geliştirildiği ve başarılı bulunduğu üzere, o günlerin şartlarında oluşan sayısız organik molekül, birbirleriyle birleşmiş, ayrılmış, tekrar birleşmiş ve sınırsız sayıda deneme-yanılma yapılmıştır. Sonunda daha kararlı yapıda olan bileşimler varlıklarını korumuşlardır ve cansızlıktan canlılığın oluşumu bu şekilde, minik adımlarla, 600-700 milyon yılda gerçekleşmiştir. Bu süre, bir ribozimin var olabilmesi için fazlasıyla yeterli bir süredir. Zaten bir tanesi var olduktan sonra, sınırsız sayıda ribozim ve dolayısıyla RNA molekülünün olması işten bile değildir.



RNA var olduktan sonra, gerek diğer moleküllerle tepkimeler, gerekse de yine deneme-yanılma ve buna bağlı seçilim sonucu DNA molekülü oluşabilmiştir. Daha önceki yazımızda da ele aldığımız gibi, günümüzdeki laboratuvar deneylerinde RNA sıfırdan, sadece doğal tepkimelerle üretilebilmiştir. RNA'nın üretilebilmesi, ters transkripsiyonun bilinmesiyle birleşince (ki bu tepkime, virüs gibi çok ilkel ve canlı bile sayılmayan yapılar içerisinde gerçekleşmektedir), DNA'nın doğal şartlar altında üretilebilir olduğunu görmek işten bile değildir. Elbette bu işlem kolay ve bir anda olabilecek bir işlem değildir. Ancak elde bulunan süre düşünülecek olduğunda, bu süreçteki deneme yanılma miktarı ve bunlar içerisinden uyumlu/başarılı olanların sürekli seçilmesi, bunların nasıl mümkün olduğunu göstermektedir.



DNA'nın oluşumu, genetik kalıtımın ve dolayısıyla Evrim'in gerçek anlamda başladığı noktadır. Ancak daha önceki yazılarımızda da görüldüğü gibi Evrim Mekanizmaları'ndan ve doğa yasalarından biri olan Doğal Seçilim, bundan öncesinde de moleküler düzeyde etkilidir. Ve yine görülebileceği gibi, aslında bu kadar abartılan bir kimyasal maddenin oluşumu, o kadar da akıl almaz karmaşıklığa sahip değildir. Ne yazık ki konu hakkındaki cahil insanlar, basit ilkokul matematik bilgileriyle Evrimsel Biyoloji'ye meydan okuyabileceklerini sanarak ciddi hataya düşmektedirler. Onların akıllarına gelen soruların hemen hepsi, bilim tarafından onlarca yıl önce cevaplanıp geçilmiş sorulardır. Önemli olan araştırmasını ve sorgulamasını bilmektir.


Burada anlattıklarımızın biyokimyasal temelleri elbette ki bundan daha karmaşıktır. Ancak şimdiye kadar doğal süreçlerle oluşamayacak bir basamak bilinmemektedir. Oldukça karmaşık görülen biyokimyasal zincirler, esasında yapıların fiziksel ve kimyasal nitelikleri dahilinde mecburen olan unsurlardır. Burada devam etmeden önce, bu karmaşık gibi görünen yapıların ne şekillerde kendiliğinden oluştuğuna değinmekte de fayda görüyoruz.
 
Bu yapılar nasıl kendiliğinden oluşmuş olabilir?



Sorunun bilimsel cevabı oldukça basittir: Kimyasal bağlar. Her ne kadar canlılığa özel misyonlar yüklemeye çalışarak, bizi oluşturan yapıların kendiliğinden oluşabildiği gerçeğini ısrarla ve elimizin tersiyle itsek de, ne yazık ki gerçekler, bizim istediklerimiz yönünde olmak zorunda değildirler. Ve bilimsel araştırmalar göstermektedir ki, canlılığı (ya da cansızlığı) oluşturan yapılar, kendiliğinden, daha doğrusu Evren'in (en azından Dünya'nın) bildiğimiz her noktasına etki eden Fizik ve Kimya yasaları etkisi altında oluşabilmektedirler. Dolayısıyla, her ne kadar hayal gücümüzü ve fantezilerimizi tetikliyor olsa da, canlılığı oluşturan yapıların arkasında bir gizem, bir sır aramak hatalı olacaktır; çünkü böyle bir sırra ve hatta bu sırrın gerekliliğine bilimde asla rastlanmamıştır. Bunları biraz açalım:



Hepimizin okulda belki de nefret ederek öğrendiğimiz o meşhur bağlar ve onlara dair bilgilerimiz, aslında bir sınavdan yüksek alıp almayacağımızı belirlemekten çok öte işlevlere sahiptirler: Canlılığı (ve cansızlığı) oluşturmaktadırlar! Kovalent bağlar, iyonik bağlar, hidrojen bağları, Van der Waals kuvvetleri ve daha nicesi, sürekli olarak, aralıksız yeni moleküllerin oluşmasını sağlamakta ve kimyasal tepkimeleri tetiklemektedir…



Eğer belli atomlardan yeteri miktarda bir kaba koyarsanız ve yeterince beklerseniz, kimyasal yapılarından dolayı bu atomlar arasında bağlar oluşmaya başlayacaktır. Hep verdiğimiz örnek olarak demir atomlarından oluşan bir yapıyı, oksijen zengini bir ortama bırakırsanız, bir süre sonra siz hiçbir şey yapmasanız da, tıpkı "sihir" gibi gelse de kendiliğinden, kimyasal tepkimelerin etkisi altında, kimyasal bağların oluşumu ile demir atomları "paslanmaya", daha doğru tabiriyle "oksitlenmeye" başlayacaklardır. Bu tepkimede bir doğa üstü aramak, hayal gücüne değil, bilgi eksikliğine işaret edecektir. Çünkü arkasında hiçbir gizem bulunmamaktadır.



Bahsettiğimiz tepkime ya da aklınıza gelebilecek herhangi bir diğer kimyasal tepkime, tamamıyla elektron yapılarından kaynaklanır. Eğer yörüngelerindeki elektron sayısı gereği bunları “paylaşmaya” meyillilerse (daha doğrusu elektron yapılarından ötürü üzerlerine etkiyen kuvvetler elektron paylaşımını dikte ediyorsa) “kovalent bağlar”; eğer yörüngelerindeki elektronlardan bazıların alıp vermeye meyillilerse (daha doğrusu elektron yapılarından ötürü oluşan kuvvetler, elektronların yörüngelerinden çıkmasını sağlayacak kadar kuvvetli ise) “iyonik bağlar” oluşur. Flor (F), Oksijen (O) ve Azot (N) atomları ile Hidrojen (H) atomu arasında, bu atomların elektronegativite (elektron alma isteği, yatkınlığı) sebebiyle Hidrojen Bağı denen ve hayatın oluşmasında (daha doğrusu bu moleküllerin işlevsel olabilmelerinde) çok önemli rol oynayan bir bağ vardır. Öte yandan Van der Waals Bağları ise daha zayıf bağlardır ve basitçe, eksi yükler ile artı yükler arasındaki çekim ve eksi yükler ile eksi yükler veya artı yükler ile artı yükler arasındaki itim kuvvetlerinden doğmaktadırlar. Geçici ya da kalıcı olabilecekleri gibi, güçlü bağlar değillerdir.



Bu kimyasal maddeler arasında oluşan bağların kimini koparmak son derece kolayken, kimini koparmak için oldukça fazla enerjiye ihtiyaç duyulur. Kimi birbiriyle çok hızlı ve kolay şekilde bağ kurar, kimi ise ne kadar zorlarsanız zorlayın birbirine bağlanmaz. Bunlar da, tamamen elementlerin kimyasal ve elektronik yapılarından kaynaklanır. İşte bu sebeple, bazı kimyasal bileşikler çok kararlı yapıdayken, bazıları oldukça dengesizdir ve kolayca parçalanabilir. Benzer şekilde, dev bir molekülün bir kısmı belli kimyasal tepkimelere açıkken, bir kısmı bir diğer tipe açık olabilir, bir kısmı ise son derece kararlı olduğundan tepkimeye hiç girmeyebilir. İşte bu sebeple, oluşabilecek moleküllerin ve bu moleküller arası ilişkilerin sayısının bir sınırı yoktur; sonsuz sayıda olasılık düşünmek mümkündür.



Burada sorun, çoğunlukla büyük moleküllerin oluşabilmesi için gereken tepkimelerin "aktivasyon enerjisi"nin çok yüksek olmasıdır. Yani yapıtaşları bir arada bulunsalar bile, kendiliğinden birbirlerine bağlanabilmeleri olanaksıza yakındır ya da en azından çok düşük bir ihtimaldir. Ancak belli ki canlılığın başlangıcında bu olabilmiştir. Peki nasıl?



Daha sonra ayrıntısıyla açıklayacağımız üzere, canlılığın başladığı dönemlerde, 600 milyon yıllık bir süreçte Dünya'nın atmosferik ve çevresel koşulları bugünkünden oldukça farklıydı. Her şey çok daha kaotikti ve ısı, ışık, radyasyon gibi etmenler bugünkünden çok daha şiddetli ve farklı etkiyordu. Henüz ozon tabakası bile tam olarak oluşmamıştı - ki bir miktar delindiğinde iklimin nasıl değiştiğini görebiliyoruz. İşte bu durum, kimyasal tepkimelerin doğasını da değiştirmekteydi. Bunun gerçekliğini Miller-Urey Deneyi ile gözleyebildik. Normalde yapıtaşları ve gereken atomlar ile moleküller bir arada bulunsa belki de asla oluşmayacak olan aminoasitler, şekerler ve diğer moleküller, ilkin Dünya koşullarında çok daha hızlı bir şekilde oluşabilmektedirler. Örneğin Miller-Urey Deneyi sayesinde 1-2 hafta gibi kısa sürelerde, bu "Hayat Molekülleri"nin ilkin basamaklarının oluşabildiğini, proteinleri oluşturan aminoasitlerin büyük bir kısmının kendiliğinden oluşabildiğini gördük. Bu, bilimin açıklayıcı gücü adına büyük bir zaferdir.



İlk başta bu tepkimelerin nasıl hızlandığına, yeri gelince zaten bu yazı dizisi içerisinde değineceğiz; ancak günümüze bakacak olursak, bu tekimeler oldukça kolay bir şekilde gerçekleşmektedir; hem de Dünya koşulları tamamen değişmesine rağmen. Bu nasıl olmaktadır? Günümüzde, çoğunukla protein yapılı olan (ancak kritik bir şekilde, belli tipleri nükleotit yapılı olan; buna daha sonra geleceğiz), enzim isimli kimyasallar bulunmaktadır. Bu kimyasallar da diğer moleküller gibi son derece sıradandırlar ve proteinlerin değindiğimiz yapılarına tamamen benzemektedirler. Ancak bir özellikleri, onları değerli kılmaktadır:enzimler, ortamda bulunan ve kendileriyle ve birbirleriyle uygun olan moleküllerin kendi aralarındaki tepkimelerini hızlandırırlar. Kimi enzim bu tepkimeleri 5 kat, 10 kat, milyon kat, milyar kat hızlandırabilmektedir. Dolayısıyla başlangıçta 600 milyon yıllık bir deneme-yanılma ve bekleme süresi sonucunda oluşacak enzimler, bir defa "uzun bekleme" sonucu oluşabildikten sonra, kolaylıkla diğer tepkimeleri hızlandırabileceklerdir ve canlılığın gelişimi eksponansiyel olarak (katlı bir şekilde hızlanarak) artabilecektir. Üstelik bir tepkimenin hızlanması için enzim bulunması şart değildir. Kimi zaman basit bir kimyasalın varlığı bile tepkimeleri kat kat hızlandırabilir. Öyle ki, kimi zaman, sadece sıcaklık bile aksi takdirde yıllar alabilecek bir tepkimenin birkaç saatte olmasını sağlayabilecektir. Canlılığın oluşumu sırasında gördüğümüz durum da bunlar ve benzerleridir.
 
Geri
Top